Advanced analytical model for the prognostic of industrial systems subject to fatigue

This thesis is dedicated to the prognostic evaluation of dynamic systems. The work presented here aims at developing an advanced tool to treat the prognostic evaluation in linear and nonlinear deterministic context in a first part as well as in the stochastic context in a second part. Our purpose is to prepare a general prognostic tool that can be capable of well predicting the RUL of a system based on an analytical damage accumulation law in either a deterministic or a stochastic context.

[1]  Norman Brown,et al.  Intrinsic Lifetime of Polyethylene Pipelines , 2007 .

[2]  Radoslaw Zimroz,et al.  Vibration condition monitoring of planetary gearbox under varying external load , 2009 .

[3]  Abdo Abou Jaoude,et al.  Analytic and Nonlinear Prognostic for Vehicle Suspension Systems , 2013 .

[4]  Z. Hashin,et al.  A CUMULATIVE DAMAGE THEORY OF FATIGUE FAILURE , 1978 .

[5]  Y. K. Lin,et al.  On fatigue crack growth under random loading , 1992 .

[6]  Richard C.M. Yam,et al.  Intelligent Predictive Decision Support System for Condition-Based Maintenance , 2001 .

[7]  David He,et al.  Hidden semi-Markov model-based methodology for multi-sensor equipment health diagnosis and prognosis , 2007, Eur. J. Oper. Res..

[8]  M. Finkelstein Wearing-out of components in a variable environment , 1999 .

[9]  Estelle Deloux POLITIQUES DE MAINTENANCE CONDITIONNELLE POUR UN SYSTEME A DEGRADATION CONTINUE SOUMIS A UN ENVIRONNEMENT STRESSANT , 2008 .

[10]  Weiming Ke Reliability and Risk Models: Setting Reliability Requirements , 2007, Technometrics.

[11]  Frank L. Greitzer,et al.  Embedded Prognostics Health Monitoring , 2002 .

[12]  Kenneth A. Loparo,et al.  Physically based diagnosis and prognosis of cracked rotor shafts , 2002, SPIE Defense + Commercial Sensing.

[13]  David Chelidze,et al.  Multimode damage tracking and failure prognosis in electromechanical systems , 2002, SPIE Defense + Commercial Sensing.

[14]  Michael J. Roemer,et al.  Predicting remaining life by fusing the physics of failure modeling with diagnostics , 2004 .

[15]  Zdeněk P. Bažant,et al.  Mechanics of solid materials , 1992 .

[16]  A. Conle,et al.  Overstrain effects during variable amplitude service history testing , 1980 .

[17]  E. W. C. Wilkins,et al.  Cumulative damage in fatigue , 1956 .

[18]  Jan Drewes Achenbach,et al.  A Probabilistic Method to Predict Fatigue Crack Initiation , 2006 .

[19]  C. Ball,et al.  Prognostics and Condition Based Maintenance ( CBM ) A Scientific Crystal Ball , 2003 .

[20]  Steven Y. Liang,et al.  Adaptive Prognostics for Rolling Element Bearing Condition , 1999 .

[21]  B. Tjahjono,et al.  A Review of Research in Manufacturing Prognostics , 2006, 2006 4th IEEE International Conference on Industrial Informatics.

[22]  Kun Yang,et al.  A combining condition prediction model and its application in power plant , 2004, Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826).

[23]  J. C. Freche,et al.  Application of a double linear damage rule to cumulative fatigue , 1967 .

[24]  Czesław Cempel,et al.  Simple condition forecasting techniques in vibroacoustical diagnostics , 1987 .

[25]  D. S. Dugdale,et al.  Fatigue tests on notched mild steel plates with measurements of fatigue cracks , 1957 .

[26]  N. Frost Notch Effects and the Critical Alternating Stress Required to Propagate a Crack in an Aluminium Alloy Subject to Fatigue Loading , 1960 .

[27]  Leo Christodoulou,et al.  Using materials prognosis to maximize the utilization potential of complex mechanical systems , 2004 .

[28]  Abdo Abou Jaoude,et al.  Analytic prognostic for petrochemical pipelines , 2011, 1212.6060.

[29]  Krishna R. Pattipati,et al.  An interacting multiple model approach to model-based prognostics , 2003, SMC'03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme - System Security and Assurance (Cat. No.03CH37483).

[30]  Michael J. Roemer,et al.  Enhancement of physics-of-failure prognostic models with system level features , 2002, Proceedings, IEEE Aerospace Conference.

[31]  Harry R. Millwater,et al.  Probabilistic Surface Damage Tolerance Assessment of Aircraft Turbine Rotors , 2003 .

[32]  David W. Coit,et al.  System reliability modeling considering the dependence of component environmental influences , 1999, Annual Reliability and Maintainability. Symposium. 1999 Proceedings (Cat. No.99CH36283).

[33]  Yibing Xiang,et al.  Efficient probabilistic methods for real-time fatigue damage prognosis , 2010 .

[34]  Jonathan S. Maltz,et al.  NEURAL NETWORKS FOR PNEUMATIC ACTUATOR FAULT DETECTION , 1999 .

[35]  D. C. Swanson,et al.  A general prognostic tracking algorithm for predictive maintenance , 2001, 2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542).

[36]  Krishna R. Pattipati,et al.  Reasoning and modeling systems in diagnosis and prognosis , 2001, SPIE Defense + Commercial Sensing.

[37]  P. L Hall,et al.  Probabilistic physics-of-failure models for component reliabilities using Monte Carlo simulation and Weibull analysis: a parametric study , 2003, Reliab. Eng. Syst. Saf..

[38]  P.W. Kalgren,et al.  Defining PHM, A Lexical Evolution of Maintenance and Logistics , 2006, 2006 IEEE Autotestcon.

[39]  M Z Chen,et al.  PARTICLE FILTERING BASED FAULT PREDICTION OF NONLINEAR SYSTEMS , .

[40]  Bernardo Zuccarello,et al.  Fatigue life prediction under wide band random loading , 2004 .

[41]  R. Ganesan,et al.  Multivariable Trend Analysis Using Neural Networks for Intelligent Diagnostics of Rotating Machinery , 1997 .

[42]  J. B. Wang,et al.  Statistical analysis of fatigue crack growth for 16MnR steel under constant amplitude loads , 1999 .

[43]  R. Zemouri Contribution à la surveillance des systèmes de production à l'aide des réseaux de neurones dynamiques : Application à la e-maintenance , 2003 .

[44]  Daming Lin,et al.  A review on machinery diagnostics and prognostics implementing condition-based maintenance , 2006 .

[45]  Kai Goebel,et al.  When will it break? A hybrid soft computing model to predict time-to-break margins in paper machines , 2002, Optics + Photonics.

[46]  M.J. Roemer,et al.  Prognostic enhancements to diagnostic systems for improved condition-based maintenance [military aircraft] , 2002, Proceedings, IEEE Aerospace Conference.

[47]  Abhinav Saxena,et al.  - 1-A COMPARISON OF THREE DATA-DRIVEN TECHNIQUES FOR PROGNOSTICS , 2008 .

[48]  F. Kozin,et al.  Probabilistic models of fatigue crack growth: Results and speculations , 1989 .

[49]  J. L. S. Luk Mémoire d'habilitation à diriger des recherches , 2000 .

[50]  Otilia Elena Dragomir Contribution au pronostic de défaillances par réseau neuro-flou : maîtrise de l'erreur de prédiction. , 2008 .

[51]  Nagi Gebraeel,et al.  Residual life predictions from vibration-based degradation signals: a neural network approach , 2004, IEEE Transactions on Industrial Electronics.

[52]  Mark Schwabacher,et al.  A Survey of Data -Driven Prognostics , 2005 .

[53]  Kai Goebel,et al.  A Survey of Artificial Intelligence for Prognostics , 2007, AAAI Fall Symposium: Artificial Intelligence for Prognostics.

[54]  Abdo Abou Jaoude,et al.  Prediction in Complex Dimension Using Kolmogorov's Set of Axioms , 2010 .

[55]  K. Goebel,et al.  Fusing competing prediction algorithms for prognostics , 2006, 2006 IEEE Aerospace Conference.

[56]  Leo Christodoulou,et al.  Integrating damage state awareness and mechanism-based prediction , 2004 .

[57]  S. Winterstein,et al.  Random Fatigue: From Data to Theory , 1992 .

[58]  George Vachtsevanos,et al.  Fault prognosis using dynamic wavelet neural networks , 2001, 2001 IEEE Autotestcon Proceedings. IEEE Systems Readiness Technology Conference. (Cat. No.01CH37237).

[59]  Wen-Fang Wu,et al.  Probabilistic models of fatigue crack propagation and their experimental verification , 2004 .

[60]  Douglas E. Adams,et al.  Nonlinear damage models for diagnosis and prognosis in structural dynamic systems , 2002, SPIE Defense + Commercial Sensing.

[61]  Sebastian Martorell,et al.  Age-dependent reliability model considering effects of maintenance and working conditions , 1999 .

[62]  Hoon Sohn,et al.  A Coupled Approach to Developing Damage Prognosis Solutions , 2003 .

[63]  G. R. Halford,et al.  Reexamination of Cumulative Fatigue Damage Laws , 1985 .

[64]  Jay Lee Measurement of machine performance degradation using a neural network model , 1996 .

[65]  V. A. Kopnov Optimal degradation processes control by two-level policies , 1999 .

[66]  Tim Topper,et al.  Fatigue Life Prediction for Variable Amplitude Strain Histories , 1993 .

[67]  Wen-Fang Wu,et al.  A study of stochastic fatigue crack growth modeling through experimental data , 2003 .

[68]  A. Hess,et al.  Challenges, issues, and lessons learned chasing the "Big P". Real predictive prognostics. Part 1 , 2005, 2005 IEEE Aerospace Conference.

[69]  Mustapha Ouladsine,et al.  Analytic prognostic model for stochastic fatigue of petrochemical pipelines , 2012, 2012 2nd Australian Control Conference.

[70]  Jay Lee,et al.  Smart products and service systems for e-business transformation , 2003, Int. J. Technol. Manag..

[71]  Mr. Eric Goodin,et al.  Evaluation of Nonlinear Cumulative Damage Models for Assessing HCF / LCF Interactions in Multiaxial Loadings , 2006 .

[72]  S. D. Manning,et al.  Stochastic crack growth analysis methodologies for metallic structures , 1990 .

[73]  Antoine Grall,et al.  A condition-based maintenance policy for stochastically deteriorating systems , 2002, Reliab. Eng. Syst. Saf..

[74]  George Vachtsevanos,et al.  A Particle Filtering Framework for Failure Prognosis , 2005 .

[75]  Richard M. Christensen,et al.  A Physically Based Cumulative Damage Formalism , 2008 .

[76]  Mustapha Ouladsine,et al.  Lifetime Analytic Prognostic for Petrochemical Pipes Subject to Fatigue , 2012 .

[77]  James C. Newman,et al.  An empirical stress-intensity factor equation for the surface crack , 1981 .

[78]  Mustapha Ouladsine,et al.  Estimation of Damage Behaviour for Model-Based Prognostic , 2009 .

[79]  Alexandre Muller Contribution à la maintenance prévisionnelle des systèmes de production par la formalisation d'un processus de pronostic. (Contribution to the proactive maintenance of manufacturing system: formalisation of the prognosis process) , 2005 .

[80]  D. Chopp,et al.  Extended finite element method and fast marching method for three-dimensional fatigue crack propagation , 2003 .

[81]  Mathieu Glade Modélisation des coûts de cycle de vie : prévision des coûts de maintenance et de la fiabilité : Application à l'aéronautique , 2005 .

[82]  Frank L. Lewis,et al.  Intelligent Fault Diagnosis and Prognosis for Engineering Systems , 2006 .

[83]  Mohammad Zehsaz,et al.  Fatigue Analysis of the Weldments of the Suspension-System-Support for an Off-Road Vehicle under the Dynamic Loads Due to the Road Profiles , 2009 .

[84]  Abdo Abou Jaoude,et al.  STOCHASTIC PROGNOSTIC PARADIGM FOR PETROCHEMICAL PIPELINES SUBJECT TO FATIGUE , 2013 .

[85]  Mustapha Ouladsine,et al.  A Generic Prognostic Methodology Using Damage Trajectory Models , 2009, IEEE Transactions on Reliability.

[86]  J. Zapateroa,et al.  An experimental analysis of fatigue crack growth under random loading , 2003 .

[87]  M. E. Artley,et al.  Probabilistic durability analysis methods for metallic airframes , 1987 .

[88]  V. Makis,et al.  Recursive filters for a partially observable system subject to random failure , 2003, Advances in Applied Probability.

[89]  H. G. Natke,et al.  A PASSIVE DIAGNOSTIC EXPERIMENT WITH ERGODIC PROPERTIES , 1997 .

[90]  P. C. Paris,et al.  A Critical Analysis of Crack Propagation Laws , 1963 .

[91]  Dan Negrut,et al.  A Stochastic Approach to Integrated Reliability Prediction , 2009 .

[92]  Xuefei Guan,et al.  Trans-dimensional MCMC for fatigue prognosis model determination, updating, and averaging , 2010 .

[93]  David Mercier,et al.  Application des noyaux multiples de type Kernel Basis à la méthode Relevance Vector Machine pour la sélection de modèles , 2009 .

[94]  Yong Bai,et al.  Subsea Pipelines and Risers , 2005 .

[95]  Jay Lee,et al.  Infotronics Technologies and Predictive Tools for Next-Generation Maintenance Systems , 2004 .

[96]  S. K. Yang,et al.  An experiment of state estimation for predictive maintenance using Kalman filter on a DC motor , 2002, Reliab. Eng. Syst. Saf..

[97]  Michael J. Roemer,et al.  A Prognostic Modeling Approach for Predicting Recurring Maintenance for Shipboard Propulsion Systems , 2001 .

[98]  B. Dubuisson,et al.  Advanced pattern recognition techniques for system monitoring and diagnosis : A survey , 1997 .

[99]  Romano Patrick-Aldaco,et al.  A model based framework for fault diagnosis and prognosis of dynamical systems with an application to helicopter transmissions , 2007 .

[100]  H. O. Köksal,et al.  An isotropic damage model for concrete , 1999 .

[101]  C.S. Byington,et al.  Data-driven neural network methodology to remaining life predictions for aircraft actuator components , 2004, 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720).

[102]  K. Pattipati,et al.  Model-based Prognostic Techniques , 2003 .

[103]  Daniel J. Inman,et al.  Damage Prognosis For Aerospace, Civil and Mechanical Systems Preface , 2005 .

[104]  A. R. Ismail,et al.  PREDICTION OF FATIGUE LIFE ON LOWER SUSPENSION ARM SUBJECTED TO VARIABLE AMPLITUDE LOADING , 2010 .

[105]  G. R. Halford,et al.  Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage , 1981 .

[106]  Joseph P. Cusumano,et al.  A Dynamical Systems Approach to Failure Prognosis , 2004 .

[107]  Michael T. Todinov Necessary and sufficient condition for additivity in the sense of the Palmgren–Miner rule , 2001 .

[108]  Asok Ray,et al.  Stochastic modeling of fatigue crack dynamics for on-line failure prognostics , 1996, IEEE Trans. Control. Syst. Technol..

[109]  H. Saunders,et al.  Probabilistic models of cumulative damage , 1985 .

[110]  Srinivas Katipamula,et al.  Review Article: Methods for Fault Detection, Diagnostics, and Prognostics for Building Systems—A Review, Part I , 2005 .

[111]  Rune Brincker,et al.  Vibration Based Inspection of Civil Engineering Structures , 1993 .

[112]  J.W. Sheppard,et al.  IEEE Standards for Prognostics and Health Management , 2008, IEEE Aerospace and Electronic Systems Magazine.

[113]  Steven Y. Liang,et al.  Damage mechanics approach for bearing lifetime prognostics , 2002 .

[114]  Steven Y. Liang,et al.  STOCHASTIC PROGNOSTICS FOR ROLLING ELEMENT BEARINGS , 2000 .

[115]  Subhasish Mohanty,et al.  Stochastic crack growth under variable loading for health monitoring and prognosis , 2008, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[116]  Stephen J. Engel,et al.  Prognostics, the real issues involved with predicting life remaining , 2000, 2000 IEEE Aerospace Conference. Proceedings (Cat. No.00TH8484).

[117]  J. Bert Keats,et al.  Statistical Methods for Reliability Data , 1999 .

[118]  A. Chatterjee,et al.  A Dynamical Systems Approach to Damage Evolution Tracking, Part 2: Model-Based Validation and Physical Interpretation , 2002 .