SUGT1 controls susceptibility to HIV-1 infection by stabilizing microtubule plus-ends

[1]  E. Campbell,et al.  Role of Microtubules and Microtubule-Associated Proteins in HIV-1 Infection , 2018, Journal of Virology.

[2]  G. Melikyan,et al.  Single HIV-1 Imaging Reveals Progression of Infection through CA-Dependent Steps of Docking at the Nuclear Pore, Uncoating, and Nuclear Transport. , 2018, Cell host & microbe.

[3]  V. Malikov,et al.  Distinct functions of diaphanous-related formins regulate HIV-1 uncoating and transport , 2017, Proceedings of the National Academy of Sciences.

[4]  M. Steinmetz,et al.  Control of microtubule organization and dynamics: two ends in the limelight , 2015, Nature Reviews Molecular Cell Biology.

[5]  Pascal Roux,et al.  Microtubule-associated Proteins 1 (MAP1) Promote Human Immunodeficiency Virus Type I (HIV-1) Intracytoplasmic Routing to the Nucleus , 2014, The Journal of Biological Chemistry.

[6]  F. Christopher,et al.  Second Generation Imaging of Nuclear/Cytoplasmic HIV-1 Complexes , 2014 .

[7]  D. Walsh,et al.  HIV-1 induces the formation of stable microtubules to enhance early infection. , 2013, Cell host & microbe.

[8]  Baek Kim,et al.  p21-mediated RNR2 repression restricts HIV-1 replication in macrophages by inhibiting dNTP biosynthesis pathway , 2013, Proceedings of the National Academy of Sciences.

[9]  A. Cereseto,et al.  Single-Cell Imaging of HIV-1 Provirus (SCIP) , 2013, Proceedings of the National Academy of Sciences.

[10]  D. Odde,et al.  Estimating the Microtubule GTP Cap Size In Vivo , 2012, Current Biology.

[11]  C. Doe,et al.  Sgt1 acts via an LKB1/AMPK pathway to establish cortical polarity in larval neuroblasts. , 2012, Developmental biology.

[12]  Kenneth W Dunn,et al.  A practical guide to evaluating colocalization in biological microscopy. , 2011, American journal of physiology. Cell physiology.

[13]  Gaudenz Danuser,et al.  Analysis of Microtubule Dynamic Instability Using a Plus End Growth Marker , 2010, Nature Methods.

[14]  A. E. Davies,et al.  Hsp90–Sgt1 and Skp1 target human Mis12 complexes to ensure efficient formation of kinetochore–microtubule binding sites , 2010, The Journal of cell biology.

[15]  B. Salin,et al.  HIV‐1 integrase trafficking in S. cerevisiae: a useful model to dissect the microtubule network involvement of viral protein nuclear import , 2009, Yeast.

[16]  S. Kandels-Lewis,et al.  CLIP-170 tracks growing microtubule ends by dynamically recognizing composite EB1/tubulin-binding sites , 2008, The Journal of cell biology.

[17]  Luba Tchertanov,et al.  The G140S mutation in HIV integrases from raltegravir-resistant patients rescues catalytic defect due to the resistance Q148H mutation , 2008, Nucleic acids research.

[18]  A. Cereseto,et al.  HIV-1 Pre-Integration Complexes Selectively Target Decondensed Chromatin in the Nuclear Periphery , 2008, PloS one.

[19]  F. Martinon,et al.  A crucial function of SGT1 and HSP90 in inflammasome activity links mammalian and plant innate immune responses , 2007, Nature Immunology.

[20]  D. Evanoff,et al.  Urinary bladder epithelium antigen induces CD8+ T cell tolerance, activation, and autoimmune response , 2007, The Journal of Immunology.

[21]  F. Barré-Sinoussi,et al.  The engagement of activating FcγRs inhibits primate lentivirus replication in human macrophages , 2007, The Journal of Immunology.

[22]  W. Earnshaw,et al.  Sgt1 is required for human kinetochore assembly , 2004, EMBO reports.

[23]  Y. Pommier,et al.  Azido-Containing Diketo Acid Derivatives Inhibit Human Immunodeficiency Virus Type 1 Integrase In Vivo and Influence the Frequency of Deletions at Two-Long-Terminal-Repeat-Circle Junctions , 2004, Journal of Virology.

[24]  A. Engelman,et al.  Intracellular transport of human immunodeficiency virus type 1 integrase , 2003, Journal of Cell Science.

[25]  D. McDonald,et al.  Visualization of the intracellular behavior of HIV in living cells , 2002, The Journal of cell biology.

[26]  E. Bon,et al.  HIV-1 integrase interacts with yeast microtubule-associated proteins. , 2002, Biochimica et biophysica acta.

[27]  S. Elledge,et al.  SGT1 encodes an essential component of the yeast kinetochore assembly pathway and a novel subunit of the SCF ubiquitin ligase complex. , 1999, Molecular cell.