Photoactivatable CRISPR-Cas9 for optogenetic genome editing

[1]  Moritoshi Sato,et al.  Engineered pairs of distinct photoswitches for optogenetic control of cellular proteins , 2015, Nature Communications.

[2]  Moritoshi Sato,et al.  CRISPR-Cas9-based photoactivatable transcription system. , 2015, Chemistry & biology.

[3]  Lukas E Dow,et al.  Inducible in vivo genome editing with CRISPR/Cas9 , 2015, Nature Biotechnology.

[4]  C. Gersbach,et al.  A light-inducible CRISPR/Cas9 system for control of endogenous gene activation , 2015, Nature chemical biology.

[5]  Feng Zhang,et al.  A split-Cas9 architecture for inducible genome editing and transcription modulation , 2015, Nature Biotechnology.

[6]  J. Keith Joung,et al.  Efficient Delivery of Genome-Editing Proteins In Vitro and In Vivo , 2014, Nature Biotechnology.

[7]  Zhiwen Zhu,et al.  Conditional knockouts generated by engineered CRISPR-Cas9 endonuclease reveal the roles of coronin in C. elegans neural development. , 2014, Developmental cell.

[8]  Zengrong Zhu,et al.  An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells. , 2014, Cell stem cell.

[9]  M. Jinek,et al.  Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease , 2014, Nature.

[10]  Daesik Kim,et al.  Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins , 2014, Genome research.

[11]  Suresh Ramakrishna,et al.  Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA , 2014, Genome research.

[12]  Jin-Soo Kim,et al.  Surrogate reporter-based enrichment of cells containing RNA-guided Cas9 nuclease-induced mutations , 2014, Nature Communications.

[13]  Feng Zhang,et al.  Crystal Structure of Cas9 in Complex with Guide RNA and Target DNA , 2014, Cell.

[14]  David A. Scott,et al.  Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity , 2013, Cell.

[15]  G. Church,et al.  CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering , 2013, Nature Biotechnology.

[16]  Eli J. Fine,et al.  DNA targeting specificity of RNA-guided Cas9 nucleases , 2013, Nature Biotechnology.

[17]  J. Keith Joung,et al.  High frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells , 2013, Nature Biotechnology.

[18]  Takanari Inoue,et al.  Rapidly reversible manipulation of molecular activity with dual chemical dimerizers. , 2013, Angewandte Chemie.

[19]  Luke A. Gilbert,et al.  Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression , 2013, Cell.

[20]  James E. DiCarlo,et al.  RNA-Guided Human Genome Engineering via Cas9 , 2013, Science.

[21]  Ravi S Kane,et al.  Optogenetic protein clustering and signaling activation in mammalian cells , 2013, Nature Methods.

[22]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[23]  Jennifer Doudna,et al.  RNA-programmed genome editing in human cells , 2013, eLife.

[24]  Robert DeRose,et al.  Manipulating signaling at will: chemically-inducible dimerization (CID) techniques resolve problems in cell biology , 2013, Pflügers Archiv - European Journal of Physiology.

[25]  A. Heckel,et al.  Light‐Controlled Tools , 2013 .

[26]  A. Heckel,et al.  Light-controlled tools. , 2012, Angewandte Chemie.

[27]  D. Sabatini,et al.  mTOR Signaling in Growth Control and Disease , 2012, Cell.

[28]  Jin-Soo Kim,et al.  Surrogate reporters for enrichment of cells with nuclease-induced mutations , 2011, Nature Methods.

[29]  David S Lawrence,et al.  Illuminating the chemistry of life: design, synthesis, and applications of "caged" and related photoresponsive compounds. , 2009, ACS chemical biology.

[30]  S. A. Knight,et al.  Use of mRNA- and protein-destabilizing elements to develop a highly responsive reporter system , 2005, Nucleic acids research.