Gold nanoring trimers: a versatile structure for infrared sensing.

In this work we report on the observation of surface plasmon properties of periodic arrays of gold nanoring trimers fabricated by electron beam lithography. It is shown that the localized surface plasmon resonances of such gold ring trimers occur in the infrared spectral region and are strongly influenced by the nanoring geometry and their relative positions. Based on numerical simulations of the optical extinction spectra and of the electric near-field intensity maps, the resonances are assigned to surface plasmon states arising from the strong intra-trimer electromagnetic interaction. We show that the nanoring trimer configuration allows for generating infrared surface plasmon resonances associated with strongly localized electromagnetic energy, thus providing plasmonic nanoresonators well-suited for sensing and surface enhanced near-infrared Raman spectroscopy.

[1]  Garnett W. Bryant,et al.  Optical properties of coupled metallic nanorods for field-enhanced spectroscopy , 2005 .

[2]  A. Requicha,et al.  Plasmonics—A Route to Nanoscale Optical Devices , 2001 .

[3]  Paul S Weiss,et al.  Active molecular plasmonics: controlling plasmon resonances with molecular switches. , 2009, Nano letters.

[4]  N. Halas,et al.  Tailoring Plasmonic Substrates for Surface Enhanced Spectroscopies , 2008 .

[5]  Peter Nordlander,et al.  Plasmon hybridization in nanorod dimers , 2008 .

[6]  F J García de Abajo,et al.  Optical properties of gold nanorings. , 2003, Physical review letters.

[7]  P. Jain,et al.  Noble metal nanoparticle pairs: effect of medium for enhanced nanosensing. , 2008, Nano letters.

[8]  Bernhard Lamprecht,et al.  Optical properties of two interacting gold nanoparticles , 2003 .

[9]  Federico Capasso,et al.  Self-Assembled Plasmonic Nanoparticle Clusters , 2010, Science.

[10]  P. Schuck,et al.  Manipulating nano-scale light fields with the Asymmetric Bowtie nano-Colorsorter , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[11]  C. Girard Near fields in nanostructures , 2005 .

[12]  M. Käll,et al.  Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. , 2007, Nano letters.

[13]  Paul Mulvaney,et al.  Plasmon coupling of gold nanorods at short distances and in different geometries. , 2009, Nano letters.

[14]  George C Schatz,et al.  Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy. , 2010, Journal of the American Chemical Society.

[15]  Christian Girard,et al.  Dual wavelength sensing based on interacting gold nanodisk trimers , 2010, Nanotechnology.

[16]  F. G. D. Abajo,et al.  RELATIVISTIC ELECTRON ENERGY LOSS AND ELECTRON-INDUCED PHOTON EMISSION IN INHOMOGENEOUS DIELECTRICS , 1998 .

[17]  Zongfu Yu,et al.  Large Single-Molecule Fluorescence Enhancements Produced by a Bowtie Nanoantenna , 2009 .

[18]  K. Crozier,et al.  Gold nanorings as substrates for surface-enhanced Raman scattering. , 2010, Optics letters.

[19]  Emil Prodan,et al.  Plasmon Hybridization in Nanoparticle Dimers , 2004 .

[20]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[21]  A Paul Alivisatos,et al.  Transition from isolated to collective modes in plasmonic oligomers. , 2010, Nano letters.

[22]  Javier Aizpurua,et al.  Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. , 2006, Optics Express.

[23]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[24]  Federico Capasso,et al.  Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability. , 2010, Nano letters.

[25]  G. Wurtz,et al.  Plasmonic nanorod metamaterials for biosensing. , 2009, Nature materials.

[26]  Javier Aizpurua,et al.  Close encounters between two nanoshells. , 2008, Nano letters.

[27]  W. Barnes,et al.  Diffractive coupling in gold nanoparticle arrays and the effect of disorder. , 2009, Optics letters.

[28]  Thomas R Huser,et al.  Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates. , 2005, Nano letters.

[29]  F. G. D. Abajo,et al.  Retarded field calculation of electron energy loss in inhomogeneous dielectrics , 2002 .