In Vivo Imaging of Nanoparticle Delivery and Tumor Microvasculature with Multimodal Optical Coherence Tomography References and Links
暂无分享,去创建一个
Craig L Duvall | Melissa C Skala | N. K. Agrawal | Amy T Shah | Jason M Tucker-Schwartz | J. Duker | J. Schuman | M. Dewhirst | N. Yuldasheva | J. Izatt | N. Munce | I. Vitkin | M. Bawendi | C. Puliafito | S. Emelianov | S. Boppart | A. Oldenburg | I. Gorczynska | A. Schwartz | W. Stinson | M. Hee | K. Gregory | K. Homan | V. Torchilin | N. Halas | R. Drezek | J. Haldar | C. Duvall | A. Cable | B. Bouma | S. Adie | T. Bajraszewski | J. Frangioni | R. Kuranov | C. Michelich | G. Tearney | Q. Yin-Goen | P. Targowski | A. Kowalczyk | P. Kruizinga | J. Tyrrell | M. Villiger | T. Lasser | C. Santschi | T. Niidome | B. Standish | E. Moriyama | T. Ralston | T. Sau | S. Ashkenazi | C. Orendorff | B. Korgel | H. Ghandehari | Kelsey R. Beavers | Arnida | D. Slatkin | H. Smilowitz | T. M. Focella | M. Napier | T. Larson | W. Hagens | R. Geertsma | J. Tunnell | C. Walkey | A. Byrnes | C. Landon | A. Bouwens | M. Skala | A. Shah | J. Goulley | B. Applegate | R. Rezaeipoor | N. Bocchio | S. Krishnan | Kelsey R Beavers | Wesley W Sit | J. Tucker-Schwartz | K. Day | M. Janat-Amsbury | J. Fang | G. Paciotti | T. Mori | Silica | S. Kim | T. Flotte | M. Day | T. L. T. ten Hagen | L. Ma | M. Marjanovic | E. Swanson | J. DeSimone | A. Ray | D. M. Shin | W. L. Monsky | D. Halaney | R. Shelton | L. Tamarkin | J. W. Villard | J. de Boer | M. C. Burger | S. E. Hunyadi | W. Sit | C. Berclaz | A. J. Simnick | D. Fukumura | Fujimoto | J. Fujimoto | J. Jiang | A Mariampillai | M. K. Leung | B. Wilson | V. X. Yang | M. Khurana | R. Wang | Z. Chen | Wojtkowski | T. Ko | Vakoc | M. Natan | J. E. Bear | K. R. Beavers | P. Krystek | C. A. Patil | J. Liu | A. J. Lin | S. W. Huang | J M Tucker-Schwartz | T. A. Meyer | Y Jung | R. Reif | Y. Zeng | T. Hong | D. C. Colvin | Y. Xu | A. K. Dunn | C Pache | W. Lee | R. Jain | W. Chan | M. El-Sayed | A. Park | Guan | Z. Huang | S D Perrault | T. Jennings | H. C. Fischer | J. Cheng | Y Akiyama | Y. Katayama | C. M. Peterson | R. A. Roberts | G. R. Robbins | J. Perry | M. P. Kai | K. Chen | T. Bo | D. Huang | J. P. Zimmer | A. J. Sips | T. Li | Jones | C. Joo | H C Hendargo | Wang | S. Gambhir | S. Chen | C. P. Lin | W. Chang | B. Tromberg | A M Gobin | M. H. Lee | W. D. James | J. L. West | J F Hainfeld | Anisotropic | H. Nakamura | I. El-Sayed | Nie | A. Estrada | Milner | W. Liu | R. Lanning | T. Padera | L. Bartlett | T. Stylianopoulos | L. Munn | A. Chilkoti | X. Huang | J. Schwartz | W. Park | R. E. Shetty | R. J. Price | J. C. Stafford | K. Uthamanthil | R. J. Pham | C. L. Mcnichols | J. D. Coleman | F P Payne | J. G. H. Von Maltzahn | S. K. Bandaru | M. J. Das | S. Sailor | Bhatia | S K Libutti | H. R. Alexander | W. E. Gannon | M. Walker | G. D. Seidel | A Agarwal | M. O 'donnell | N. Kotov | A K Oyelere | P. Chen | N J Durr | D. Smith | K. Sokolov | A. Ben-Yakar | J Park | P. Diagaradjane | Intra-Organ | X M Qian | X. Peng | D. O. Ansari | G. Z. Chen | L. Yang | A. N. Young | S. Wang | W H De Jong | W. Frey | C L Zavaleta | B. R. Smith | I. Walton | W. Doering | G. Davis | B. Shojaei | L Tong | Q. Wei | A. Wei | Gold | J Fang | H. Maeda | R John | E. J. Chaney | B. P. Sutton | D Jacob | A L Oldenburg | M. N. Hansen | S. C. Adler | R. Huang | J. Huber | A S Paranjape | S. Baranov | T. Wang | K. P. Feldman | T. E. Johnston | S K Hobbs | F. Yuan | W. G. Roberts | L. Griffith | H S Choi | P. Misra | E. Tanaka | B. Itty Ipe | Renal | A K Iyer | G. Khaled | C J Murphy | A. M. Gole | J. Gao | L. Gou | T Akkin | R. Estrada | S. J. Chiu | C. Tomasi | S. Farsiu | M R Dreher | D. Ho | T. E. Feldman | A A Manzoor | L. H. Lindner | J. Y. Park | M. R. Dreher | S. Das | G. Hanna | G. A. Koning | D. Needham | Overcoming | H M Subhash | H. Xie | J. W. Smith | O. J. T. Mccarty | J. Ting | M. Gibson
[1] Ji-Xin Cheng,et al. Gold Nanorods as Contrast Agents for Biological Imaging: Optical Properties, Surface Conjugation and Photothermal Effects † , 2009, Photochemistry and photobiology.
[2] Benjamin J Vakoc,et al. Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging , 2009, Nature Medicine.
[3] Lawrence Tamarkin,et al. Phase I and Pharmacokinetic Studies of CYT-6091, a Novel PEGylated Colloidal Gold-rhTNF Nanomedicine , 2010, Clinical Cancer Research.
[4] Ruikang K. Wang,et al. Three-dimensional high-resolution imaging of gold nanorods uptake in sentinel lymph nodes. , 2011, Nano letters.
[5] David L. Halaney,et al. Two-photon luminescence properties of gold nanorods , 2013, Biomedical optics express.
[6] Melissa C Skala,et al. Dual-modality photothermal optical coherence tomography and magnetic-resonance imaging of carbon nanotubes. , 2012, Optics letters.
[7] J. Fujimoto. Optical coherence tomography for ultrahigh resolution in vivo imaging , 2003, Nature Biotechnology.
[8] J. Fujimoto,et al. Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography. , 2008, Optics express.
[9] J. West,et al. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. , 2007, Nano letters.
[10] S. Emelianov,et al. Silica-coated gold nanorods as photoacoustic signal nanoamplifiers. , 2011, Nano letters.
[11] Michael J Sailor,et al. Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. , 2009, Cancer research.
[12] Sucbei Moon,et al. Reference spectrum extraction and fixed-pattern noise removal in optical coherence tomography , 2010, Optics express.
[13] Carlo Tomasi,et al. Automated non-rigid registration and mosaicing for robust imaging of distinct retinal capillary beds using speckle variance optical coherence tomography , 2013, Biomedical optics express.
[14] Sheng-Wen Huang,et al. Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging , 2007 .
[15] M. Dewhirst,et al. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. , 2006, Journal of the National Cancer Institute.
[16] J. Duker,et al. Ultrahigh Speed, Ultrahigh Resolution Optical Coherence Tomography Using Spectral Domain Detection , 2004 .
[17] Sanjiv S. Gambhir,et al. Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy , 2009, Proceedings of the National Academy of Sciences.
[18] Warren C W Chan,et al. Mediating tumor targeting efficiency of nanoparticles through design. , 2009, Nano letters.
[19] Xiaohua Huang,et al. Peptide-conjugated gold nanorods for nuclear targeting. , 2007, Bioconjugate chemistry.
[20] H. Maeda,et al. Exploiting the enhanced permeability and retention effect for tumor targeting. , 2006, Drug discovery today.
[21] G. Ripandelli,et al. Optical coherence tomography. , 1998, Seminars in ophthalmology.
[22] Ruikang K. Wang,et al. Depth profiling of photothermal compound concentrations using phase sensitive optical coherence tomography. , 2011, Journal of biomedical optics.
[23] Travis A. Meyer,et al. In vivo photothermal optical coherence tomography of gold nanorod contrast agents , 2012, Biomedical optics express.
[24] Petra Krystek,et al. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. , 2008, Biomaterials.
[25] R. Jain,et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. , 1998, Proceedings of the National Academy of Sciences of the United States of America.
[26] Bruce J. Tromberg,et al. A comparison of Doppler optical coherence tomography methods , 2012, Biomedical optics express.
[27] R. John,et al. In vivo magnetomotive optical molecular imaging using targeted magnetic nanoprobes , 2010, Proceedings of the National Academy of Sciences.
[28] M. Dewhirst,et al. Overcoming limitations in nanoparticle drug delivery: triggered, intravascular release to improve drug penetration into tumors. , 2012, Cancer research.
[29] J F Hainfeld,et al. Gold nanoparticles: a new X-ray contrast agent. , 2006, The British journal of radiology.
[30] M. Bawendi,et al. Renal clearance of quantum dots , 2007, Nature Biotechnology.
[31] May D. Wang,et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags , 2008, Nature Biotechnology.
[32] S. Gambhir,et al. Gold nanoparticles: a revival in precious metal administration to patients. , 2011, Nano letters.
[33] James E Bear,et al. Nanoparticle clearance is governed by Th1/Th2 immunity and strain background. , 2013, The Journal of clinical investigation.
[34] Jun Fang,et al. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. , 2011, Advanced drug delivery reviews.
[35] Jeffrey W. Smith,et al. Optical detection of indocyanine green encapsulated biocompatible poly (lactic-co-glycolic) acid nanoparticles with photothermal optical coherence tomography. , 2012, Optics letters.
[36] Ryan L. Shelton,et al. Fourier domain pump-probe optical coherence tomography imaging of Melanin , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.
[37] C. Murphy,et al. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. , 2005, The journal of physical chemistry. B.
[38] Adrian Mariampillai,et al. Speckle variance detection of microvasculature using swept-source optical coherence tomography. , 2008, Optics letters.
[39] Theo Lasser,et al. Fast Three-dimensional Imaging of Gold Nanoparticles in Living Cells with Photothermal Optical Lock-in Optical Coherence Microscopy , 2022 .
[40] Taner Akkin,et al. Depth-resolved measurement of transient structural changes during action potential propagation. , 2007, Biophysical journal.
[41] Melissa C Skala,et al. Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres. , 2008, Nano letters.
[42] Amit S. Paranjape,et al. Depth resolved photothermal OCT detection of macrophages in tissue using nanorose , 2010, Biomedical optics express.
[43] R Jason Stafford,et al. Feasibility study of particle-assisted laser ablation of brain tumors in orthotopic canine model. , 2009, Cancer research.
[44] A. Dunn,et al. Intra‐organ biodistribution of gold nanoparticles using intrinsic two‐photon‐induced photoluminescence , 2010, Lasers in surgery and medicine.
[45] Hamidreza Ghandehari,et al. Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages. , 2011, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.
[46] K. Sokolov,et al. Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. , 2007, Nano letters.
[47] Amy L Oldenburg,et al. Imaging gold nanorods in excised human breast carcinoma by spectroscopic optical coherence tomography. , 2009, Journal of materials chemistry.
[48] T. Niidome,et al. The effects of PEG grafting level and injection dose on gold nanorod biodistribution in the tumor-bearing mice. , 2009, Journal of controlled release : official journal of the Controlled Release Society.