Trimming swept volumes

Abstract The trimming problem for swept volumes — concerning the excision of points ostensibly on the boundary that actually lie in the swept volume interior — is investigated in detail. Building upon several techniques that have appeared in the literature, efficient methods for both local and global trimming of swept volume are developed. These methods are shown to be computationally cost effective when combined with the sweep-envelope differential equation algorithm for the approximate calculation and graphical rendering of swept volumes for quite general objects and sweeps. Examples are presented to demonstrate the efficacy of the trimming strategies.

[1]  Mark A. Ganter,et al.  Dynamic Collision Detection Using Swept Solids , 1986 .

[2]  Varol Akman,et al.  Sweeping with all graphical ingredients in a topological picturebook , 1992, Comput. Graph..

[3]  Christoph M. Hoffmann,et al.  Geometric and Solid Modeling: An Introduction , 1989 .

[4]  Christophe Schlick,et al.  Implicit Sweep Objects , 1996, Comput. Graph. Forum.

[5]  Soon-Bum Lim,et al.  Approximate General Sweep Boundary of a 2D Curved Object, , 1993, CVGIP Graph. Model. Image Process..

[6]  Ralph R. Martin,et al.  Sweeping of three-dimensional objects , 1990, Comput. Aided Des..

[7]  William E. Lorensen,et al.  Implicit modeling of swept surfaces and volumes , 1994, Proceedings Visualization '94.

[8]  John K. Johnstone,et al.  A rational model of the surface swept by a curve * , 1995, Comput. Graph. Forum.

[9]  Herbert B. Voelcker,et al.  Graphical simulation & automatic verification of NC machining programs , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[10]  Myung-Soo Kim,et al.  Rotational sweep volumes of objects bounded by algebraic curves , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[11]  J. Leavitt,et al.  Automatic generation of 3-D envelopes , 1984 .

[12]  Gershon Elber Global error bounds and amelioration of sweep surfaces , 1997, Comput. Aided Des..

[13]  Erik D. Goodman,et al.  Direct dimensional NC verification , 1990, Comput. Aided Des..

[14]  Karim Abdel-Malek,et al.  Geometric representation of the swept volume using Jacobian rank-deficiency conditions , 1997, Comput. Aided Des..

[15]  John W. Boyse,et al.  Interference detection among solids and surfaces , 1979, CACM.

[16]  Ming C. Leu,et al.  The sweep-envelope differential equation algorithm and its application to NC machining verification , 1997, Comput. Aided Des..

[17]  Robert E. Barnhill,et al.  A marching method for parametric surface/surface intersection , 1990, Comput. Aided Geom. Des..

[18]  Ming C. Leu,et al.  Geometric Representation of Swept Volumes with Application to Polyhedral Objects , 1990, Int. J. Robotics Res..

[19]  F. Litvin,et al.  Swept Volume Determination and Interference Detection for Moving 3-D Solids , 1991 .

[20]  Jai Menon,et al.  More powerful solid modeling through ray representations , 1994, IEEE Computer Graphics and Applications.

[21]  Thomas W. Sederberg,et al.  Conversion of complex contour line definitions into polygonal element mosaics , 1978, SIGGRAPH.

[22]  Thomas R. Chase,et al.  Generating the swept area of a body undergoing planar motion , 1991, DAC 1991.

[23]  Ian T. Chappel The use of vectors to simulate material removed by numerically controlled milling , 1983 .

[24]  Ming C. Leu,et al.  Analysis and modelling of deformed swept volumes , 1994, Comput. Aided Des..

[25]  K. K. Wang,et al.  Geometric Modeling for Swept Volume of Moving Solids , 1986, IEEE Computer Graphics and Applications.

[26]  Alexei Sourin,et al.  Function Representation for Sweeping by a Moving Solid , 1996, IEEE Trans. Vis. Comput. Graph..

[27]  Nicholas M. Patrikalakis,et al.  Surface-to-surface intersections , 1993, IEEE Computer Graphics and Applications.

[28]  K. Kedem,et al.  Generalized planar sweeping of polygons , 1992 .