The Local Galaxy 8 μm Luminosity Function

A Spitzer Space Telescope survey in the NOAO Deep Wide Field in Boötes provides a complete, 8 μm-selected sample of galaxies to a limiting (Vega) magnitude of 13.5. In the 6.88 deg2 field sampled, 79% of the 4867 galaxies have spectroscopic redshifts, allowing an accurate determination of the local (z < 0.3) galaxy luminosity function. Stellar and dust emission can be separated on the basis of observed galaxy colors. Dust emission (mostly PAH) accounts for 80% of the 8 μm luminosity, stellar photospheres account for 19%, and AGN emission accounts for roughly 1%. A subsample of the 8 μm-selected galaxies have blue, early-type colors, but even most of these have significant PAH emission. The luminosity functions for the total 8 μm luminosity and for the dust emission alone are both well fit by Schechter functions. For the 8 μm luminosity function, the characteristic luminosity is νL(8.0 μm) = 1.8 × 1010 L☉, while for the dust emission alone it is 1.6 × 1010 L☉. The average 8 μm luminosity density at z < 0.3 is 3.1 × 107 L☉ Mpc-3, and the average luminosity density from dust alone is 2.5 × 107 L☉ Mpc-3. This luminosity arises predominantly from galaxies with 8 μm luminosities (νLν) between 2 × 109 and 2 × 1010 L☉, i.e., normal galaxies, not luminous or ultraluminous infrared galaxies (LIRGs/ULIRGs).

[1]  Xu Zhou,et al.  Evolution of the Galaxy Luminosity Function for Redshift and Density Environment at 0.03 < z < 0.5 , 2006 .

[2]  D. Calzetti,et al.  The Mid-Infrared Spectrum of Star-forming Galaxies: Global Properties of Polycyclic Aromatic Hydrocarbon Emission , 2006, astro-ph/0610913.

[3]  C. Grillmair,et al.  Observations of Ultraluminous Infrared Galaxies with the Infrared Spectrograph on the Spitzer Space Telescope. II. The IRAS Bright Galaxy Sample , 2006, astro-ph/0610218.

[4]  M. Brodwin,et al.  The Evolving Luminosity Function of Red Galaxies , 2006, astro-ph/0609584.

[5]  B. Peterson,et al.  Near‐infrared and optical luminosity functions from the 6dF Galaxy Survey , 2006, astro-ph/0603609.

[6]  Dimitra Rigopoulou,et al.  Infrared Power-Law Galaxies in the Chandra Deep Field-South: Active Galactic Nuclei and Ultraluminous Infrared Galaxies , 2006 .

[7]  P. P. van der Werf,et al.  Star Formation in Distant Red Galaxies: Spitzer Observations in the Hubble Deep Field-South , 2005, astro-ph/0511598.

[8]  Ssc,et al.  Spitzer Observations of Massive, Red Galaxies at High Redshift , 2005, astro-ph/0511289.

[9]  J. Bernard-Salas,et al.  Mid-Infrared Properties of Low-Metallicity Blue Compact Dwarf Galaxies from the Spitzer Infrared Spectrograph , 2005, astro-ph/0510856.

[10]  C. Chiosi,et al.  Modelling galaxy spectra in presence of interstellar dust – I. The model of interstellar medium and the library of dusty single stellar populations , 2005, astro-ph/0510493.

[11]  J. Dunlop,et al.  Linking Stellar Mass and Star Formation in Spitzer MIPS 24 μm Galaxies , 2005, astro-ph/0510070.

[12]  J. Salzer,et al.  INFRARED PROPERTIES OF A COMPLETE SAMPLE OF STAR-FORMING DWARF GALAXIES , 2005, 1006.5712.

[13]  Chen Cao,et al.  PAH and Mid-Infrared Luminosities as Measures of Star Formation Rate in Spitzer First Look Survey Galaxies , 2005, astro-ph/0509281.

[14]  Michael J. Kurtz,et al.  Hectospec, the MMT’s 300 Optical Fiber‐Fed Spectrograph , 2005, astro-ph/0508554.

[15]  Tucson,et al.  Infrared Luminosity Functions from the Chandra Deep Field-South: The Spitzer View on the History of Dusty Star Formation at 0 ≲ z ≲ 1* , 2005, astro-ph/0506462.

[16]  G. Rieke,et al.  Metallicity Effects on Mid-Infrared Colors and the 8 μm PAH Emission in Galaxies , 2005, astro-ph/0506214.

[17]  M. Blanton,et al.  Mid-Infrared and Visible Photometry of Galaxies: Anomalously Low Polycyclic Aromatic Hydrocarbon Emission from Low-Luminosity Galaxies , 2005 .

[18]  A. Sternberg,et al.  Mid-Infrared Spectroscopy of Two Luminous Submillimeter Galaxies at z ~ 2.8 , 2005, astro-ph/0504431.

[19]  J. Surace,et al.  Accepted for Publication in the Astrophysical Journal Spitzer Detection of PAH and Silicate Dust Features in the Mid-Infrared Spectra of z ∼ 2 Ultraluminous Infrared Galaxies , 2005 .

[20]  P. P. van der Werf,et al.  IRAC Mid-Infrared Imaging of the Hubble Deep Field-South: Star Formation Histories and Stellar Masses of Red Galaxies at z > 2 , 2005, astro-ph/0504219.

[21]  M. Rieke,et al.  Spectroscopic Redshifts to z > 2 for Optically Obscured Sources Discovered with the Spitzer Space Telescope , 2005, astro-ph/0502216.

[22]  A. Szalay,et al.  The Star Formation Rate Function of the Local Universe , 2004, astro-ph/0411307.

[23]  Arjun Dey,et al.  Submitted to the Astrophysical Journal Letters Mid-Infrared Selection of Active Galaxies , 2004 .

[24]  D. Thompson,et al.  Spitzer 24 Micron Observations of Optical/Near-Infrared-Selected Extremely Red Galaxies: Evidence for Assembly of Massive Galaxies at z ∼ 1-2? , 2004 .

[25]  E. L. Wright,et al.  The Infrared Array Camera (IRAC) Shallow Survey , 2004 .

[26]  Paul S. Smith,et al.  The Multiband Imaging Photometer for Spitzer (MIPS) , 2004 .

[27]  P. P. van der Werf,et al.  A Substantial Population of Red Galaxies at z > 2: Modeling of the Spectral Energy Distributions of an Extended Sample , 2004, astro-ph/0408077.

[28]  A. M. Hopkins,et al.  On the Evolution of Star-forming Galaxies , 2004, astro-ph/0407170.

[29]  G. Fazio,et al.  Spatial Distribution of Warm Dust in Early-Type Galaxies , 2004, astro-ph/0406379.

[30]  S. Serjeant,et al.  SPITZER OBSERVATIONS OF THE SCUBA/VLA SOURCES IN THE LOCKMAN HOLE: STAR FORMATION HISTORY OF INFRARED-LUMINOUS GALAXIES , 2004, astro-ph/0406359.

[31]  Caltech,et al.  The Extraordinary Mid-infrared Spectrum of the Blue Compact Dwarf Galaxy SBS 0335–052 , 2004, astro-ph/0406150.

[32]  G. Rieke,et al.  Polycyclic Aromatic Hydrocarbon Contribution to the Infrared Output Energy of the Universe at z ≃ 2 , 2004, astro-ph/0406016.

[33]  Gary J. Melnick,et al.  In-flight performance and calibration of the Infrared Array Camera (IRAC) for the Spitzer Space Telescope , 2004, SPIE Astronomical Telescopes + Instrumentation.

[34]  G. Fazio,et al.  Mid-Infrared Galaxy Morphology along the Hubble Sequence , 2004, astro-ph/0405594.

[35]  F. Masci,et al.  Obscured and Unobscured Active Galactic Nuclei in the Spitzer Space Telescope First Look Survey , 2004, astro-ph/0405604.

[36]  J. Loveday Evolution of the galaxy luminosity function at z < 0.3 , 2003, astro-ph/0309429.

[37]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003, astro-ph/0302209.

[38]  C. Beichman,et al.  Infrared Emission of Normal Galaxies from 2.5 to 12 Micron: Infrared Space Observatory Spectra, Near-Infrared Continuum, and Mid-Infrared Emission Features , 2003, astro-ph/0301481.

[39]  E. Bell Estimating Star Formation Rates from Infrared and Radio Luminosities: The Origin of the Radio-Infrared Correlation , 2002, astro-ph/0212121.

[40]  R. Nichol,et al.  The Galaxy Luminosity Function and Luminosity Density at Redshift z = 0.1 , 2002, astro-ph/0210215.

[41]  K. Glazebrook,et al.  The Hawaii+Anglo-Australian Observatory K-Band Galaxy Redshift Survey. I. The Local K-Band Luminosity Function , 2002, astro-ph/0209440.

[42]  D. Madgwick,et al.  Spectroscopic detection of quasars in the 2dF Galaxy Redshift Survey , 2002, astro-ph/0203307.

[43]  E. Peeters,et al.  The PAH emission spectra of Large Magellanic Cloud H II regions , 2002 .

[44]  David Elbaz,et al.  The Bulk of the Cosmic Infrared Background Resolved by ISOCAM , 2002, astro-ph/0201328.

[45]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: the dependence of galaxy clustering on luminosity and spectral type , 2001, astro-ph/0112043.

[46]  T. Takeuchi,et al.  Tests of Statistical Methods for Estimating Galaxy Luminosity Function and Applications to the Hubble Deep Field , 2000, astro-ph/0003127.

[47]  J. Newman,et al.  Measuring the Cosmic Equation of State with Counts of Galaxies , 1999, The Astrophysical journal.

[48]  M. Page,et al.  An improved method of constructing binned luminosity functions , 1999, astro-ph/9909434.

[49]  D. Rigopoulou,et al.  A Large Mid-Infrared Spectroscopic and Near-Infrared Imaging Survey of Ultraluminous Infrared Galaxies: Their Nature and Evolution , 1999, astro-ph/9908300.

[50]  C. Surace,et al.  The Universe as Seen by ISO , 1999 .

[51]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[52]  John B. Roll,et al.  Targeting and sequencing algorithms for the Hectospec's optical fiber robotic positioner , 1998, Astronomical Telescopes and Instrumentation.

[53]  Andrew Szentgyorgyi,et al.  Construction of the Hectospec: 300 optical fiber-fed spectrograph for the converted MMT , 1998, Astronomical Telescopes and Instrumentation.

[54]  D. Kunze,et al.  What Powers Ultraluminous IRAS Galaxies? , 1997, astro-ph/9711255.

[55]  C. Willmer Estimating galaxy luminosity functions. , 1997, astro-ph/9707246.

[56]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[57]  U. Seljak,et al.  A Line of sight integration approach to cosmic microwave background anisotropies , 1996, astro-ph/9603033.

[58]  M. S. Oey,et al.  Atlas of quasar energy distributions , 1994 .

[59]  P. Roche,et al.  An atlas of mid-infrared spectra of galaxy nuclei , 1991 .

[60]  R. Ellis,et al.  The 60-μ and far-infrared luminosity functions of IRAS galaxies , 1990 .

[61]  P. Roche,et al.  8–13 µm Spectrophotometry of galaxies – V. The nuclei of five spiral galaxies , 1985 .

[62]  Alexander G. G. M. Tielens,et al.  Polycyclic aromatic hydrocarbons and the unidentified infrared emission bands - Auto exhaust along the Milky Way , 1985 .

[63]  P. Roche,et al.  8–13 µm spectrophotometry of galaxies – I. Galaxies with giant H II region nuclei , 1984 .

[64]  J. Huchra,et al.  A survey of galaxy redshifts. III - The density field and the induced gravity field , 1982 .

[65]  Allan Sandage,et al.  The velocity field of bright nearby galaxies. I - The variation of mean absolute magnitude with redshift for galaxies in a magnitude-limited sample , 1979 .

[66]  R. Joyce,et al.  2 to 8 micron spectrophotometry of M82. , 1977 .

[67]  K. M. Merrill,et al.  8 to 13 micron spectra of NGC 7027, BD + 30$sup 0$3639, and NGC 6572 , 1973 .

[68]  D. Lynden-Bell,et al.  A Method of Allowing for Known Observational Selection in Small Samples Applied to 3CR Quasars , 1971 .

[69]  B. Krauskopf,et al.  Proc of SPIE , 2003 .

[70]  J. Puget,et al.  A New Component of the Interstellar Matter: Small Grains and Large Aromatic Molecules , 1989 .

[71]  Maarten Schmidt,et al.  Space Distribution and Luminosity Functions of Quasi-Stellar Radio Sources , 1968 .