An automated hierarchical eXtended finite element approach for multiphysics problems involving discontinuities

An automated hierarchical eXtended finite element approach for multiphysics problems involving discontinuities by Mischa Jahn In this thesis, a hierarchical eXtended finite element method for the modeling and numerical simulation of multiphysics problems and its implementation into a framework that uses automated code generation is presented. The approach consists of introducing hierarchically ordered level set functions, motivated by the structure of the considered problem, to decompose a given hold-all domain into several subdomains. The decomposition is guaranteed to be geometrically consistent which means that no overlapping regions or voids can arise. Mathematically, the approach decouples the computational mesh from the physical domains and, thereby, allows for large deformations and topological changes, such as the rise of (new) subdomains. At domain boundaries, quantities, or their gradient, may be modeled discontinuously and eXtended approximation spaces are introduced for the (sharp) representation of such features on the discrete level. The enrichment is realized by Heaviside functions which are defined subject to the hierarchical level set functions and, hence, introduce additional basis functions and coefficients locally at the respective (sub)domain boundary. For imposing interface and boundary conditions, the Nitsche method is used. By design, the developed approach is well suited to be implemented using automated code generation. As a result, the hierarchical eXtended finite element method is implemented as toolbox miXFEM for the FEniCS framework. Therefore, the core components of FEniCS are significantly extended and new methods (e.g. the subdivision of elements and the assembling of tensors) are added. As the evolution of interfaces is often part of the problem, the framework miXFEM is supplemented by a level set toolbox providing maintaining methods such as reinitialization and volume correction as well as methods for computing a non-material velocity field. The method and its implementation is validated against several examples and then used for the modeling and simulation of different real-world applications in 2d and 3d. Since this thesis is motivated by several research projects where melting and solidification processes are of interest, we focus on these kind of problems and present results for a thermal upsetting process and different welding processes. However, due to the generality and flexibility of the developed framework, it can be used to rapidly implement and simulate problems from different areas such as multiphase flow or other problems with evolving geometries.

[1]  Anders Logg,et al.  A compiler for variational forms , 2006, TOMS.

[2]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[3]  M. Stynes,et al.  Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems , 1996 .

[4]  A. Reusken,et al.  On the Accuracy of the Level Set SUPG Method for Approximating Interfaces , 2011 .

[5]  Erik Burman,et al.  A Penalty-Free Nonsymmetric Nitsche-Type Method for the Weak Imposition of Boundary Conditions , 2011, SIAM J. Numer. Anal..

[6]  Garth N. Wells,et al.  Modeling evolving discontinuities , 2012 .

[7]  G. M.P. Swann And Many Others … , 2019, Economics as Anatomy.

[8]  G. Buscaglia,et al.  A geometric mass-preserving redistancing scheme for the level set function , 2009 .

[9]  T. Klock,et al.  Zentrum für Technomathematik Fachbereich 3 – Mathematik und Informatik A level set toolbox including reinitialization and mass correction algorithms for FEniCS , 2016 .

[10]  Peter Hansbo,et al.  AN UNFITTED FINITE ELEMENT METHOD FOR ELLIPTIC INTERFACE PROBLEMS , 2001 .

[11]  A. Schmidt,et al.  Finite element methods for problems with solid‐liquid‐solid phase transitions and free melt surface , 2012 .

[12]  Charles M. Elliott,et al.  On the Finite Element Approximation of an Elliptic Variational Inequality Arising from an Implicit Time Discretization of the Stefan Problem , 1981 .

[13]  Robert C. Kirby,et al.  FIAT: numerical construction of finite element basis functions , 2012 .

[14]  Yazid Abdelaziz,et al.  Review: A survey of the extended finite element , 2008 .

[15]  A. Schmidt,et al.  3D Finite element simulation of a material accumulation process including phase transitions and a capillary surface , 2014 .

[16]  D. Kuzmin,et al.  Quantitative benchmark computations of two‐dimensional bubble dynamics , 2009 .

[17]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[19]  S. Osher,et al.  Motion of multiple junctions: a level set approach , 1994 .

[20]  C. W. Hirt,et al.  An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .

[21]  Jean-François Remacle,et al.  Imposing Dirichlet boundary conditions in the eXtended Finite Element Method , 2011 .

[22]  Åke Björck,et al.  A new high order method of regula falsi type for computing a root of an equation , 1973 .

[23]  Jean-François Remacle,et al.  A computational approach to handle complex microstructure geometries , 2003 .

[24]  M. Jahn,et al.  Zentrum für Technomathematik Fachbereich 3 – Mathematik und Informatik Solving the Stefan problem with prescribed interface using an XFEM toolbox for FENICS , 2016 .

[25]  A. Reusken,et al.  On a Space-Time Extended Finite Element Method for the Solution of a Class of Two-Phase Mass Transport Problems , 2015 .

[26]  W. Schiesser Computational Mathematics in Engineering and Applied Science: ODEs, DAEs, and PDEs , 1993 .

[27]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[28]  R. Nochetto,et al.  Theory of adaptive finite element methods: An introduction , 2009 .

[29]  Thomas-Peter Fries,et al.  Higher‐order XFEM for curved strong and weak discontinuities , 2009 .

[30]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[31]  Steven J. Ruuth A Diffusion-Generated Approach to Multiphase Motion , 1998 .

[32]  P. Hansbo,et al.  Fictitious domain finite element methods using cut elements , 2012 .

[33]  T. Belytschko,et al.  A review of extended/generalized finite element methods for material modeling , 2009 .

[34]  Peter Hansbo,et al.  CutFEM: Discretizing geometry and partial differential equations , 2015 .

[35]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[36]  W. Schiesser The Numerical Method of Lines: Integration of Partial Differential Equations , 1991 .

[37]  Philip L. Roe,et al.  A new level set model for multimaterial flows , 2014, J. Comput. Phys..

[38]  A. Luttmann Modellierung und Simulation von Prozessen mit fest-flüssig Phasenübergang und freiem Kapillarrand , 2018 .

[39]  Peter Hansbo,et al.  Nitsche's method for interface problems in computa‐tional mechanics , 2005 .

[40]  A. Visintin Models of Phase Transitions , 1996 .

[41]  Garth N. Wells,et al.  Optimizations for quadrature representations of finite element tensors through automated code generation , 2011, TOMS.

[42]  T. Chan,et al.  A Variational Level Set Approach to Multiphase Motion , 1996 .

[43]  Anders Logg,et al.  DOLFIN: Automated finite element computing , 2010, TOMS.

[44]  Anders Logg,et al.  UFC: a Finite Element Code Generation Interface , 2012 .

[45]  Anders Logg,et al.  FFC: the FEniCS Form Compiler , 2012 .

[46]  J. C. Jaeger,et al.  Conduction of Heat in Solids , 1952 .

[47]  Martin Sandve Alnæs,et al.  UFL: a finite element form language , 2012 .

[48]  Anders Logg,et al.  Unified framework for finite element assembly , 2009, Int. J. Comput. Sci. Eng..

[49]  I. Babuska,et al.  Nonconforming Elements in the Finite Element Method with Penalty , 1973 .

[50]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[51]  Pedro Díez,et al.  Hierarchical X-FEM for n-phase flow (n > 2) , 2009 .

[52]  Amy Henderson,et al.  The ParaView Guide: A Parallel Visualization Application , 2004 .

[53]  A. Reusken,et al.  Numerical Methods for Two-phase Incompressible Flows , 2011 .

[54]  T. Belytschko,et al.  The extended/generalized finite element method: An overview of the method and its applications , 2010 .

[55]  Tayfun E. Tezduyar,et al.  Interface-tracking and interface-capturing techniques for finite element computation of moving boundaries and interfaces , 2006 .

[56]  Ivo Babuška,et al.  Generalized finite element methods for three-dimensional structural mechanics problems , 2000 .

[57]  F. Vollertsen,et al.  An enhanced model for energy balance in laser-based free form heading , 2009 .

[58]  G. C. Danielson,et al.  Thermal Properties of Armco Iron , 1967 .

[59]  Martin Stynes,et al.  Numerical Treatment of Partial Differential Equations , 2007 .

[60]  Garth N. Wells,et al.  Automated Modelling of Evolving Discontinuities , 2009, Algorithms.

[62]  G. Burton Sobolev Spaces , 2013 .

[63]  Thomas-Peter Fries,et al.  Higher-order meshing of implicit geometries - part II: Approximations on manifolds , 2017, ArXiv.

[64]  R. Bank,et al.  Analysis of some moving space-time finite element methods , 1993 .

[65]  John E. Dolbow,et al.  On strategies for enforcing interfacial constraints and evaluating jump conditions with the extended finite element method , 2004 .

[66]  John E. Dolbow,et al.  Solving thermal and phase change problems with the eXtended finite element method , 2002 .

[67]  Lijian Tan,et al.  A level set simulation of dendritic solidification of multi-component alloys , 2007, J. Comput. Phys..

[68]  Anders Logg,et al.  DOLFIN: a C++/Python Finite Element Library , 2012 .

[69]  E. Bänsch,et al.  An ALE finite element method for a coupled Stefan problem and Navier–Stokes equations with free capillary surface , 2013 .

[70]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[71]  Dipl.-Ing. Martin Bernauer,et al.  Motion Planning for the Two-Phase Stefan Problem in Level Set Formulation , 2010 .

[72]  Eberhard Bänsch,et al.  Finite element discretization of the Navier–Stokes equations with a free capillary surface , 2001, Numerische Mathematik.

[73]  L. I. Rubinshteĭn The Stefan Problem , 1971 .

[74]  T. Strouboulis,et al.  The generalized finite element method: an example of its implementation and illustration of its performance , 2000 .

[75]  A. Schmidt,et al.  Finite element simulation for material accumulation and welding processes including a free melt surface , 2013 .

[76]  Komkamol Chongbunwatana,et al.  Simulation of vapour keyhole and weld pool dynamics during laser beam welding , 2014, Prod. Eng..

[77]  A. Kaplan A MODEL OF DEEP PENETRATION LASER WELDING BASED ON CALCULATION OF THE KEYHOLE PROFILE , 1994 .

[78]  T. Belytschko,et al.  The extended finite element method (XFEM) for solidification problems , 2002 .

[79]  C. J. Smithells,et al.  Smithells metals reference book , 1949 .

[80]  I. Jawahir,et al.  Size effects in manufacturing of metallic components , 2009 .

[81]  D. Rosenthal,et al.  The Theory of Moving Sources of Heat and Its Application to Metal Treatments , 1946, Journal of Fluids Engineering.

[82]  T. Klock,et al.  NUMERICAL SOLUTION OF THE STEFAN PROBLEM IN LEVEL SET FORMULATION WITH THE EXTENDED FINITE ELEMENT METHOD IN FENICS , 2017 .

[83]  Mehdi Nikbakht,et al.  Automated Solution of Partial Differential Equations with Discontinuities using the Partition of Unity Method , 2012 .

[84]  Eugenio Oñate,et al.  A general procedure for deriving stabilized space–time finite element methods for advective–diffusive problems , 1999 .

[85]  I. Babuska The finite element method with Lagrangian multipliers , 1973 .

[86]  T. Fries,et al.  On time integration in the XFEM , 2009 .

[87]  G. Tallini,et al.  ON THE EXISTENCE OF , 1996 .

[88]  Frédéric Hecht,et al.  New development in freefem++ , 2012, J. Num. Math..

[89]  I. Babuska The Finite Element Method with Penalty , 1973 .

[90]  John W. Barrett,et al.  Finite element approximation of the Dirichlet problem using the boundary penalty method , 1986 .

[91]  Robert C. Kirby,et al.  Algorithm 839: FIAT, a new paradigm for computing finite element basis functions , 2004, TOMS.

[92]  Anders Logg,et al.  Unified form language: A domain-specific language for weak formulations of partial differential equations , 2012, TOMS.

[93]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[94]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[95]  Benedikt Schott,et al.  Stabilized Cut Finite Element Methods for Complex Interface Coupled Flow Problems , 2017 .

[96]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[97]  Gerhard Dziuk Theorie und Numerik partieller Differentialgleichungen , 2010 .

[98]  S. Osher,et al.  A PDE-Based Fast Local Level Set Method 1 , 1998 .

[99]  Alfred Schmidt,et al.  Energy dissipation in laser-based free form heading: a numerical approach , 2014, Prod. Eng..