An automated hierarchical eXtended finite element approach for multiphysics problems involving discontinuities
暂无分享,去创建一个
[1] Anders Logg,et al. A compiler for variational forms , 2006, TOMS.
[2] G. Batchelor,et al. An Introduction to Fluid Dynamics , 1968 .
[3] M. Stynes,et al. Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems , 1996 .
[4] A. Reusken,et al. On the Accuracy of the Level Set SUPG Method for Approximating Interfaces , 2011 .
[5] Erik Burman,et al. A Penalty-Free Nonsymmetric Nitsche-Type Method for the Weak Imposition of Boundary Conditions , 2011, SIAM J. Numer. Anal..
[6] Garth N. Wells,et al. Modeling evolving discontinuities , 2012 .
[7] G. M.P. Swann. And Many Others … , 2019, Economics as Anatomy.
[8] G. Buscaglia,et al. A geometric mass-preserving redistancing scheme for the level set function , 2009 .
[9] T. Klock,et al. Zentrum für Technomathematik Fachbereich 3 – Mathematik und Informatik A level set toolbox including reinitialization and mass correction algorithms for FEniCS , 2016 .
[10] Peter Hansbo,et al. AN UNFITTED FINITE ELEMENT METHOD FOR ELLIPTIC INTERFACE PROBLEMS , 2001 .
[11] A. Schmidt,et al. Finite element methods for problems with solid‐liquid‐solid phase transitions and free melt surface , 2012 .
[12] Charles M. Elliott,et al. On the Finite Element Approximation of an Elliptic Variational Inequality Arising from an Implicit Time Discretization of the Stefan Problem , 1981 .
[13] Robert C. Kirby,et al. FIAT: numerical construction of finite element basis functions , 2012 .
[14] Yazid Abdelaziz,et al. Review: A survey of the extended finite element , 2008 .
[15] A. Schmidt,et al. 3D Finite element simulation of a material accumulation process including phase transitions and a capillary surface , 2014 .
[16] D. Kuzmin,et al. Quantitative benchmark computations of two‐dimensional bubble dynamics , 2009 .
[17] I. Babuska,et al. The partition of unity finite element method: Basic theory and applications , 1996 .
[19] S. Osher,et al. Motion of multiple junctions: a level set approach , 1994 .
[20] C. W. Hirt,et al. An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .
[21] Jean-François Remacle,et al. Imposing Dirichlet boundary conditions in the eXtended Finite Element Method , 2011 .
[22] Åke Björck,et al. A new high order method of regula falsi type for computing a root of an equation , 1973 .
[23] Jean-François Remacle,et al. A computational approach to handle complex microstructure geometries , 2003 .
[24] M. Jahn,et al. Zentrum für Technomathematik Fachbereich 3 – Mathematik und Informatik Solving the Stefan problem with prescribed interface using an XFEM toolbox for FENICS , 2016 .
[25] A. Reusken,et al. On a Space-Time Extended Finite Element Method for the Solution of a Class of Two-Phase Mass Transport Problems , 2015 .
[26] W. Schiesser. Computational Mathematics in Engineering and Applied Science: ODEs, DAEs, and PDEs , 1993 .
[27] I. Babuska,et al. The Partition of Unity Method , 1997 .
[28] R. Nochetto,et al. Theory of adaptive finite element methods: An introduction , 2009 .
[29] Thomas-Peter Fries,et al. Higher‐order XFEM for curved strong and weak discontinuities , 2009 .
[30] T. Hughes,et al. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .
[31] Steven J. Ruuth. A Diffusion-Generated Approach to Multiphase Motion , 1998 .
[32] P. Hansbo,et al. Fictitious domain finite element methods using cut elements , 2012 .
[33] T. Belytschko,et al. A review of extended/generalized finite element methods for material modeling , 2009 .
[34] Peter Hansbo,et al. CutFEM: Discretizing geometry and partial differential equations , 2015 .
[35] R. LeVeque. Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .
[36] W. Schiesser. The Numerical Method of Lines: Integration of Partial Differential Equations , 1991 .
[37] Philip L. Roe,et al. A new level set model for multimaterial flows , 2014, J. Comput. Phys..
[38] A. Luttmann. Modellierung und Simulation von Prozessen mit fest-flüssig Phasenübergang und freiem Kapillarrand , 2018 .
[39] Peter Hansbo,et al. Nitsche's method for interface problems in computa‐tional mechanics , 2005 .
[40] A. Visintin. Models of Phase Transitions , 1996 .
[41] Garth N. Wells,et al. Optimizations for quadrature representations of finite element tensors through automated code generation , 2011, TOMS.
[42] T. Chan,et al. A Variational Level Set Approach to Multiphase Motion , 1996 .
[43] Anders Logg,et al. DOLFIN: Automated finite element computing , 2010, TOMS.
[44] Anders Logg,et al. UFC: a Finite Element Code Generation Interface , 2012 .
[45] Anders Logg,et al. FFC: the FEniCS Form Compiler , 2012 .
[46] J. C. Jaeger,et al. Conduction of Heat in Solids , 1952 .
[47] Martin Sandve Alnæs,et al. UFL: a finite element form language , 2012 .
[48] Anders Logg,et al. Unified framework for finite element assembly , 2009, Int. J. Comput. Sci. Eng..
[49] I. Babuska,et al. Nonconforming Elements in the Finite Element Method with Penalty , 1973 .
[50] Ted Belytschko,et al. A finite element method for crack growth without remeshing , 1999 .
[51] Pedro Díez,et al. Hierarchical X-FEM for n-phase flow (n > 2) , 2009 .
[52] Amy Henderson,et al. The ParaView Guide: A Parallel Visualization Application , 2004 .
[53] A. Reusken,et al. Numerical Methods for Two-phase Incompressible Flows , 2011 .
[54] T. Belytschko,et al. The extended/generalized finite element method: An overview of the method and its applications , 2010 .
[55] Tayfun E. Tezduyar,et al. Interface-tracking and interface-capturing techniques for finite element computation of moving boundaries and interfaces , 2006 .
[56] Ivo Babuška,et al. Generalized finite element methods for three-dimensional structural mechanics problems , 2000 .
[57] F. Vollertsen,et al. An enhanced model for energy balance in laser-based free form heading , 2009 .
[58] G. C. Danielson,et al. Thermal Properties of Armco Iron , 1967 .
[59] Martin Stynes,et al. Numerical Treatment of Partial Differential Equations , 2007 .
[60] Garth N. Wells,et al. Automated Modelling of Evolving Discontinuities , 2009, Algorithms.
[62] G. Burton. Sobolev Spaces , 2013 .
[63] Thomas-Peter Fries,et al. Higher-order meshing of implicit geometries - part II: Approximations on manifolds , 2017, ArXiv.
[64] R. Bank,et al. Analysis of some moving space-time finite element methods , 1993 .
[65] John E. Dolbow,et al. On strategies for enforcing interfacial constraints and evaluating jump conditions with the extended finite element method , 2004 .
[66] John E. Dolbow,et al. Solving thermal and phase change problems with the eXtended finite element method , 2002 .
[67] Lijian Tan,et al. A level set simulation of dendritic solidification of multi-component alloys , 2007, J. Comput. Phys..
[68] Anders Logg,et al. DOLFIN: a C++/Python Finite Element Library , 2012 .
[69] E. Bänsch,et al. An ALE finite element method for a coupled Stefan problem and Navier–Stokes equations with free capillary surface , 2013 .
[70] J. Sethian,et al. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .
[71] Dipl.-Ing. Martin Bernauer,et al. Motion Planning for the Two-Phase Stefan Problem in Level Set Formulation , 2010 .
[72] Eberhard Bänsch,et al. Finite element discretization of the Navier–Stokes equations with a free capillary surface , 2001, Numerische Mathematik.
[73] L. I. Rubinshteĭn. The Stefan Problem , 1971 .
[74] T. Strouboulis,et al. The generalized finite element method: an example of its implementation and illustration of its performance , 2000 .
[75] A. Schmidt,et al. Finite element simulation for material accumulation and welding processes including a free melt surface , 2013 .
[76] Komkamol Chongbunwatana,et al. Simulation of vapour keyhole and weld pool dynamics during laser beam welding , 2014, Prod. Eng..
[77] A. Kaplan. A MODEL OF DEEP PENETRATION LASER WELDING BASED ON CALCULATION OF THE KEYHOLE PROFILE , 1994 .
[78] T. Belytschko,et al. The extended finite element method (XFEM) for solidification problems , 2002 .
[79] C. J. Smithells,et al. Smithells metals reference book , 1949 .
[80] I. Jawahir,et al. Size effects in manufacturing of metallic components , 2009 .
[81] D. Rosenthal,et al. The Theory of Moving Sources of Heat and Its Application to Metal Treatments , 1946, Journal of Fluids Engineering.
[82] T. Klock,et al. NUMERICAL SOLUTION OF THE STEFAN PROBLEM IN LEVEL SET FORMULATION WITH THE EXTENDED FINITE ELEMENT METHOD IN FENICS , 2017 .
[83] Mehdi Nikbakht,et al. Automated Solution of Partial Differential Equations with Discontinuities using the Partition of Unity Method , 2012 .
[84] Eugenio Oñate,et al. A general procedure for deriving stabilized space–time finite element methods for advective–diffusive problems , 1999 .
[85] I. Babuska. The finite element method with Lagrangian multipliers , 1973 .
[86] T. Fries,et al. On time integration in the XFEM , 2009 .
[87] G. Tallini,et al. ON THE EXISTENCE OF , 1996 .
[88] Frédéric Hecht,et al. New development in freefem++ , 2012, J. Num. Math..
[89] I. Babuska. The Finite Element Method with Penalty , 1973 .
[90] John W. Barrett,et al. Finite element approximation of the Dirichlet problem using the boundary penalty method , 1986 .
[91] Robert C. Kirby,et al. Algorithm 839: FIAT, a new paradigm for computing finite element basis functions , 2004, TOMS.
[92] Anders Logg,et al. Unified form language: A domain-specific language for weak formulations of partial differential equations , 2012, TOMS.
[93] J A Sethian,et al. A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.
[94] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .
[95] Benedikt Schott,et al. Stabilized Cut Finite Element Methods for Complex Interface Coupled Flow Problems , 2017 .
[96] R. Temam,et al. Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .
[97] Gerhard Dziuk. Theorie und Numerik partieller Differentialgleichungen , 2010 .
[98] S. Osher,et al. A PDE-Based Fast Local Level Set Method 1 , 1998 .
[99] Alfred Schmidt,et al. Energy dissipation in laser-based free form heading: a numerical approach , 2014, Prod. Eng..