Determination of the basic physical properties of semiconductor chalcopyrite type MgSnT_2 (T = P, As, Sb) from first-principles calculations

[1]  Xinlu Cheng,et al.  Ab initio calculations of elastic constants and thermodynamic properties of γTiAl under high pressures , 2010 .

[2]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[3]  Sandro Scandolo,et al.  Synthesis of novel transition metal nitrides IrN2 and OsN2. , 2006, Physical review letters.

[4]  R. Armiento,et al.  Implementing and testing the AM05 spin density functional , 2009 .

[5]  V. Borisenko,et al.  Ab initio modeling of the structural, electronic and optical properties of AIIBIVCV2 semiconductors , 2012 .

[6]  Klein,et al.  Structural properties of ordered high-melting-temperature intermetallic alloys from first-principles total-energy calculations. , 1990, Physical review. B, Condensed matter.

[7]  W. Lambrecht,et al.  First-principles study of phonons and related ground-state properties and spectra inZn-IV-N2compounds , 2008 .

[8]  Methfessel,et al.  Calculated elastic constants and structural properties of Mo and MoSi2. , 1991, Physical review. B, Condensed matter.

[9]  Krishna Rajan,et al.  Combinatorial design of semiconductor chemistry for bandgap engineering: “virtual” combinatorial experimentation , 2004 .

[10]  Sheetal Sharma,et al.  Ab initio studies of structural, electronic, optical, elastic and thermal properties of silver gallium dichalcogenides (AgGaX2: X = S, Se, Te) , 2014 .

[11]  R. Hill The Elastic Behaviour of a Crystalline Aggregate , 1952 .

[12]  Franccois-Xavier Coudert,et al.  Necessary and Sufficient Elastic Stability Conditions in Various Crystal Systems , 2014, 1410.0065.

[13]  I. S. Sokolnikoff Mathematical theory of elasticity , 1946 .

[14]  Sigurd Wagner,et al.  New materials and structures for photovoltaics , 1993 .

[15]  Alex Zunger,et al.  Structural Origin of Optical Bowing in Semiconductor Alloys , 1983 .

[16]  Xinlu Cheng,et al.  Structural and elastic properties of γTiAl under high pressure from electronic structure calculations , 2009 .

[17]  Hardev S. Saini,et al.  Effect of cation substitution on electronic band structure of ZnGeAs2 pnictides: A mBJLDA approach , 2012 .

[18]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[19]  Sadao Adachi,et al.  Properties of Group-IV, III-V and II-VI Semiconductors: Adachi/Properties of Group-IV, III-V and II-VI Semiconductors , 2005 .

[20]  R. Miloua,et al.  Birefringence of optically uni-axial ternary semiconductors , 2011 .

[21]  Xiang-dong Yang,et al.  Elasticity and thermodynamic properties of RuB2 under pressure , 2009 .

[22]  A. Zunger,et al.  Anion displacements and the band-gap anomaly in ternary AB C 2 chalcopyrite semiconductors , 1983 .

[23]  J. L. Queisser,et al.  Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications , 1976 .

[24]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[25]  Xiang-dong Yang,et al.  Elasticity and thermodynamic properties of α-Ta4AlC3 under pressure , 2010 .

[26]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[27]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[28]  Y. Ciftci,et al.  First principles studies of elastic, electronic and optical properties of chalcopyrite semiconductor ZnSnP2 , 2012 .

[29]  Hongzhi Fu,et al.  The phase transition and elastic property of osmium carbide under pressure , 2011 .

[30]  R. Armiento,et al.  Functional designed to include surface effects in self-consistent density functional theory , 2005 .

[31]  S. Aydin,et al.  First-principles calculations of elemental crystalline boron phases under high pressure: Orthorhombic B28 and tetragonal B48 , 2011 .

[32]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[33]  Yingkai Zhang,et al.  Comment on “Generalized Gradient Approximation Made Simple” , 1998 .

[34]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[35]  V. Borisenko,et al.  Ab initiomodeling of the structural, electronic, and optical properties of AIIBIVC2Vsemiconductors , 2012 .

[36]  S. Erwin,et al.  Tailoring ferromagnetic chalcopyrites , 2004, Nature materials.

[37]  H. Marcus,et al.  Elastic constants versus melting temperature in metals , 1984 .

[38]  Anna Delin,et al.  Electronic structure, chemical bonding, and optical properties of ferroelectric and antiferroelectric NaNO2 , 1999 .

[39]  G. Murtaza,et al.  Electronic, optical and bonding properties of MgYZ2 (Y=Si, Ge; Z=N, P) chalcopyrites from first principles , 2014 .

[40]  Olle Eriksson,et al.  Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2 , 1998 .

[41]  S. Chandrasekar,et al.  A calculation of the bulk modulus of polycrystalline materials , 1989 .

[42]  A. H. Reshak,et al.  Electronic structure, linear, nonlinear optical susceptibilities and birefringence of CuInX2(X = S, Se, Te) chalcopyrite-structure compounds , 2008, 0901.2017.

[43]  Xiang-dong Yang,et al.  Elastic and thermal properties of osmium under pressure , 2011 .

[44]  A. Zunger,et al.  Electronic structure of the ternary pnictide semiconductors ZnSiP 2 , ZnGeP 2 , ZnSnP 2 , ZnSiAs 2 , and MgSiP 2 , 1984 .

[45]  Ling Wu,et al.  First-principles study of structural, elastic and lattice dynamical properties of chalcopyrite BeSiV2 and MgSiV2 (V = P, As, Sb) , 2014 .

[46]  Xiang-dong Yang,et al.  First-principles calculations on elasticity of OsN2 under pressure , 2009 .

[47]  J. L. Shay,et al.  Ternary chalcopyrite semiconductors , 2013 .

[48]  D. G. Pettifor,et al.  Theoretical predictions of structure and related properties of intermetallics , 1992 .

[49]  I. Shein,et al.  Elastic properties of quaternary oxypnictides LaOFeAs and LaOFeP as basic phases for new 26–52 K superconducting materials from first principles , 2008 .

[50]  Georg Kresse,et al.  The AM05 density functional applied to solids. , 2008, The Journal of chemical physics.

[51]  Fujio Izumi,et al.  VESTA: a three-dimensional visualization system for electronic and structural analysis , 2008 .

[52]  Alex Zunger,et al.  Theory of the band-gap anomaly in AB C 2 chalcopyrite semiconductors , 1984 .

[53]  V. Borisenko,et al.  Structural, electronic and optical properties of II–IV–N2 compounds (II = Be, Zn; IV = Si, Ge) , 2008 .

[54]  Y. Monteil,et al.  Structural phase transition, elastic properties and electronic properties of chalcopyrite CuAlX2 (X = S, Se, Te) , 2009 .

[55]  Martin Ostoja-Starzewski,et al.  Universal elastic anisotropy index. , 2008, Physical review letters.

[56]  Structural and electronic properties of narrow-gap ABC2 chalcopyrite semiconductors. , 1992, Physical review. B, Condensed matter.

[57]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[58]  Chen Nianyi,et al.  Artificial neural network prediction of the band gap and melting point of binary and ternary compound semiconductors , 1998 .

[59]  Paul Saxe,et al.  Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress , 2002 .