Replication Fork Stalling at Natural Impediments

SUMMARY Accurate and complete replication of the genome in every cell division is a prerequisite of genomic stability. Thus, both prokaryotic and eukaryotic replication forks are extremely precise and robust molecular machines that have evolved to be up to the task. However, it has recently become clear that the replication fork is more of a hurdler than a runner: it must overcome various obstacles present on its way. Such obstacles can be called natural impediments to DNA replication, as opposed to external and genetic factors. Natural impediments to DNA replication are particular DNA binding proteins, unusual secondary structures in DNA, and transcription complexes that occasionally (in eukaryotes) or constantly (in prokaryotes) operate on replicating templates. This review describes the mechanisms and consequences of replication stalling at various natural impediments, with an emphasis on the role of replication stalling in genomic instability.

[1]  S. Mirkin,et al.  Replication Fork Stalling at Natural Impediments , 2007, Microbiology and Molecular Biology Reviews.

[2]  M. Cairols-Castellote,et al.  Síndrome compartimental abdominal en el postoperatorio de un paciente con aneurisma de aorta abdominal infrarrenal fisurado. Caso clínico y revisión de la bibliografía , 2007 .

[3]  E. Davidson DNA REPAIR AND MUTAGENESIS, 2ND EDITION , 2006 .

[4]  C. Neylon,et al.  A Molecular Mousetrap Determines Polarity of Termination of DNA Replication in E. coli , 2006, Cell.

[5]  Ian Grainge,et al.  Tracking of controlled Escherichia coli replication fork stalling and restart at repressor‐bound DNA in vivo , 2006, The EMBO journal.

[6]  S. Mirkin,et al.  DNA structures, repeat expansions and human hereditary disorders. , 2006, Current opinion in structural biology.

[7]  S. Mirkin,et al.  Transcription regulatory elements are punctuation marks for DNA replication. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[8]  M. O’Donnell Replisome Architecture and Dynamics in Escherichia coli* , 2006, Journal of Biological Chemistry.

[9]  R. Sinden,et al.  Replication restart: a pathway for (CTG).(CAG) repeat deletion in Escherichia coli. , 2006, Mutation research.

[10]  S. Lovett,et al.  DNA repeat rearrangements mediated by DnaK-dependent replication fork repair. , 2006, Molecular cell.

[11]  R. Heller,et al.  Replication fork reactivation downstream of a blocked nascent leading strand , 2006, Nature.

[12]  Wei Yang,et al.  Protein–nucleic acid interactions: from A(rgonaute) to X(PF) , 2006 .

[13]  B. Kerem,et al.  The molecular basis of common and rare fragile sites. , 2006, Cancer letters.

[14]  M. Lopes,et al.  Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. , 2006, Molecular cell.

[15]  S. Mirkin CHAPTER 40 – Replication of Expandable DNA Repeats , 2006 .

[16]  D. Bastia,et al.  Sap1p Binds to Ter1 at the Ribosomal DNA of Schizosaccharomyces pombe and Causes Polar Replication Fork Arrest* , 2005, Journal of Biological Chemistry.

[17]  T. Glover,et al.  Mechanisms of common fragile site instability. , 2005, Human molecular genetics.

[18]  A. Sanchez-Gorostiaga,et al.  The Mating Type Switch-Activating Protein Sap1 Is Required for Replication Fork Arrest at the rRNA Genes of Fission Yeast , 2005, Molecular and Cellular Biology.

[19]  C. E. Pearson,et al.  Repeat instability: mechanisms of dynamic mutations , 2005, Nature Reviews Genetics.

[20]  M. O’Donnell,et al.  A sliding-clamp toolbelt binds high- and low-fidelity DNA polymerases simultaneously. , 2005, Molecular cell.

[21]  Richard A Stein,et al.  Organization of supercoil domains and their reorganization by transcription , 2005, Molecular microbiology.

[22]  Cameron Neylon,et al.  Replication Termination in Escherichia coli: Structure and Antihelicase Activity of the Tus-Ter Complex , 2005, Microbiology and Molecular Biology Reviews.

[23]  Masato T. Kanemaki,et al.  Molecular anatomy and regulation of a stable replisome at a paused eukaryotic DNA replication fork. , 2005, Genes & development.

[24]  R. Rothstein,et al.  Localization of checkpoint and repair proteins in eukaryotes. , 2005, Biochimie.

[25]  A. Carr,et al.  Checkpoint responses to replication fork barriers. , 2005, Biochimie.

[26]  A. Carr,et al.  Gross Chromosomal Rearrangements and Elevated Recombination at an Inducible Site-Specific Replication Fork Barrier , 2005, Cell.

[27]  A. Shevchenko,et al.  Uncoupling of unwinding from DNA synthesis implies regulation of MCM helicase by Tof1/Mrc1/Csm3 checkpoint complex. , 2005, Journal of molecular biology.

[28]  F. Prado,et al.  Impairment of replication fork progression mediates RNA polII transcription‐associated recombination , 2005, The EMBO journal.

[29]  L. Wong,et al.  Identification of cell cycle-regulated genes in fission yeast. , 2005, Molecular biology of the cell.

[30]  R. Sinden,et al.  Duplications between direct repeats stabilized by DNA secondary structure occur preferentially in the leading strand during DNA replication. , 2005, Mutation research.

[31]  B. Sugden,et al.  Origins of bidirectional replication of Epstein–Barr virus: Models for understanding mammalian origins of DNA synthesis , 2005, Journal of cellular biochemistry.

[32]  S. Mirkin,et al.  Mechanisms of Transcription-Replication Collisions in Bacteria , 2005, Molecular and Cellular Biology.

[33]  Jeff Gore,et al.  Sequence-Directed DNA Translocation by Purified FtsK , 2005, Science.

[34]  B. Strauss Excision Repair and Bypass , 2005 .

[35]  P. Russell,et al.  The DNA damage response: sensing and signaling. , 2004, Current opinion in cell biology.

[36]  W. Heyer Damage Signaling: RecQ Sends an SOS to You , 2004, Current Biology.

[37]  W. Heyer,et al.  Recombination mechanisms; fortieth anniversary meeting of the Holliday model. , 2004, Molecules and Cells.

[38]  D. Bastia,et al.  swi1- and swi3-dependent and independent replication fork arrest at the ribosomal DNA of Schizosaccharomyces pombe. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[39]  R. Lahue,et al.  Saccharomyces cerevisiae Srs2 DNA Helicase Selectively Blocks Expansions of Trinucleotide Repeats , 2004, Molecular and Cellular Biology.

[40]  B. Michel,et al.  Multiple pathways process stalled replication forks. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[41]  M. Burkhalter,et al.  rDNA enhancer affects replication initiation and mitotic recombination: Fob1 mediates nucleolytic processing independently of replication. , 2004, Molecular cell.

[42]  I. Herskowitz,et al.  Anatomy and Dynamics of DNA Replication Fork Movement in Yeast Telomeric Regions , 2004, Molecular and Cellular Biology.

[43]  Richard T. Blaszak,et al.  PKD1 intron 21: triplex DNA formation and effect on replication. , 2004, Nucleic acids research.

[44]  S. Mirkin,et al.  Replication Stalling at Friedreich's Ataxia (GAA)n Repeats In Vivo , 2004, Molecular and Cellular Biology.

[45]  R. Stein,et al.  Transcription-induced barriers to supercoil diffusion in the Salmonella typhimurium chromosome. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[46]  K. Marians Mechanisms of replication fork restart in Escherichia coli. , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[47]  D. Bastia,et al.  Binding of the Replication Terminator Protein Fob1p to the Ter Sites of Yeast Causes Polar Fork Arrest* , 2004, Journal of Biological Chemistry.

[48]  A. Sanchez-Gorostiaga,et al.  Transcription Termination Factor reb1p Causes Two Replication Fork Barriers at Its Cognate Sites in Fission Yeast Ribosomal DNA In Vivo , 2004, Molecular and Cellular Biology.

[49]  C. López-estraño,et al.  Characterization of the pea rDNA replication fork barrier: putative cis-acting and trans-acting factors , 1999, Plant Molecular Biology.

[50]  C. McMurray Mechanisms of DNA expansion , 1995, Chromosoma.

[51]  Takehiko Kobayashi The Replication Fork Barrier Site Forms a Unique Structure with Fob1p and Inhibits the Replication Fork , 2003, Molecular and Cellular Biology.

[52]  Lara K. Goudsouzian,et al.  The Saccharomyces cerevisiae helicase Rrm3p facilitates replication past nonhistone protein-DNA complexes. , 2003, Molecular cell.

[53]  J. Courcelle,et al.  RecA-dependent recovery of arrested DNA replication forks. , 2003, Annual review of genetics.

[54]  P. Russell,et al.  Swi1 Prevents Replication Fork Collapse and Controls Checkpoint Kinase Cds1 , 2003, Molecular and Cellular Biology.

[55]  Katsuhiko Shirahige,et al.  S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex , 2003, Nature.

[56]  S. Gasser,et al.  DNA polymerase stabilization at stalled replication forks requires Mec1 and the RecQ helicase Sgs1 , 2003, The EMBO journal.

[57]  Eduardo P C Rocha,et al.  Essentiality, not expressiveness, drives gene-strand bias in bacteria , 2003, Nature Genetics.

[58]  Sandra Codlin,et al.  Complex mechanism of site‐specific DNA replication termination in fission yeast , 2003, The EMBO journal.

[59]  Takashi Horiuchi,et al.  Transcription-dependent recombination and the role of fork collision in yeast rDNA. , 2003, Genes & development.

[60]  J. Diffley,et al.  A central role for DNA replication forks in checkpoint activation and response. , 2003, Molecular cell.

[61]  Tetsuo Ashizawa,et al.  Unpaired structures in SCA10 (ATTCT)n.(AGAAT)n repeats. , 2003, Journal of molecular biology.

[62]  S. Mirkin,et al.  Replication and Expansion of Trinucleotide Repeats in Yeast , 2003, Molecular and Cellular Biology.

[63]  T. Ushiki,et al.  Molecular Visualization of Immunoglobulin Switch Region RNA/DNA Complex by Atomic Force Microscope* , 2003, The Journal of Biological Chemistry.

[64]  Brooke L Heidenfelder,et al.  Hairpin Formation in Friedreich's Ataxia Triplet Repeat Expansion* , 2003, The Journal of Biological Chemistry.

[65]  T. Glover,et al.  ATR Regulates Fragile Site Stability , 2002, Cell.

[66]  R. G. Lloyd,et al.  Recombinational repair and restart of damaged replication forks , 2002, Nature Reviews Molecular Cell Biology.

[67]  Alexandre A. Vetcher,et al.  Sticky DNA, a Long GAA·GAA·TTC Triplex That Is Formed Intramolecularly, in the Sequence of Intron 1 of the Frataxin Gene* , 2002, The Journal of Biological Chemistry.

[68]  J. Schvartzman,et al.  DNA knotting caused by head-on collision of transcription and replication. , 2002, Journal of molecular biology.

[69]  N. Kleckner,et al.  ATR Homolog Mec1 Promotes Fork Progression, Thus Averting Breaks in Replication Slow Zones , 2002, Science.

[70]  M. Lopes,et al.  Fork Reversal and ssDNA Accumulation at Stalled Replication Forks Owing to Checkpoint Defects , 2002, Science.

[71]  Kyungjae Myung,et al.  Maintenance of Genome Stability in Saccharomyces cerevisiae , 2002, Science.

[72]  B. Michel,et al.  Replication fork collapse at replication terminator sequences , 2002, The EMBO journal.

[73]  Jin-Qiu Zhou,et al.  Saccharomyces Rrm3p, a 5' to 3' DNA helicase that promotes replication fork progression through telomeric and subtelomeric DNA. , 2002, Genes & development.

[74]  P. Wade,et al.  WSTF–ISWI chromatin remodeling complex targets heterochromatic replication foci , 2002, The EMBO journal.

[75]  S. Mirkin,et al.  Positioned to expand , 2002, Nature Genetics.

[76]  C. E. Pearson,et al.  Evidence of cis-acting factors in replication-mediated trinucleotide repeat instability in primate cells , 2002, Nature Genetics.

[77]  C. E. Pearson,et al.  In Vitro (CTG)·(CAG) Expansions and Deletions by Human Cell Extracts* , 2002, The Journal of Biological Chemistry.

[78]  A. Aguilera The connection between transcription and genomic instability , 2002, The EMBO journal.

[79]  F. Grummt,et al.  Transcription termination factor TTF‐I exhibits contrahelicase activity during DNA replication , 2002, EMBO reports.

[80]  C. Schildkraut,et al.  Visualization of DNA Replication on Individual Epstein-Barr Virus Episomes , 2001, Science.

[81]  K. Nordström,et al.  Replication arrests during a single round of replication of the Escherichia coli chromosome in the absence of DnaC activity , 2001, Molecular microbiology.

[82]  Stephen J. Elledge,et al.  Mrc1 transduces signals of DNA replication stress to activate Rad53 , 2001, Nature Cell Biology.

[83]  A. S. Krasilnikov,et al.  A new trick for an old dog: TraY binding to a homopurine-homopyrimidine run attenuates DNA replication. , 2001, Journal of molecular biology.

[84]  J. Dalgaard,et al.  A DNA replication-arrest site RTS1 regulates imprinting by determining the direction of replication at mat1 in S. pombe. , 2001, Genes & development.

[85]  Shamsuzzaman,et al.  Mechanism of termination of DNA replication of Escherichia coli involves helicase–contrahelicase interaction , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[86]  S. Naylor,et al.  Myotonic Dystrophy Type 2 Caused by a CCTG Expansion in Intron 1 of ZNF9 , 2001, Science.

[87]  C. Newlon,et al.  The DNA replication checkpoint response stabilizes stalled replication forks , 2001, Nature.

[88]  Yangzhou Wang,et al.  DNA Replication Forks Pause at Silent Origins near the HML Locus in Budding Yeast , 2001, Molecular and Cellular Biology.

[89]  D. Bastia,et al.  A Replication Terminus Located at or Near a Replication Checkpoint of Bacillus subtilis Functions Independently of Stringent Control* , 2001, The Journal of Biological Chemistry.

[90]  J. Dalgaard,et al.  Does S. pombe exploit the intrinsic asymmetry of DNA synthesis to imprint daughter cells for mating-type switching? , 2001, Trends in genetics : TIG.

[91]  P. Hanawalt Controlling the efficiency of excision repair. , 2001, Mutation research.

[92]  R. Kolodner,et al.  Suppression of Spontaneous Chromosomal Rearrangements by S Phase Checkpoint Functions in Saccharomyces cerevisiae , 2001, Cell.

[93]  E. Foss Tof1p regulates DNA damage responses during S phase in Saccharomyces cerevisiae. , 2001, Genetics.

[94]  N. Cozzarelli,et al.  Positive Torsional Strain Causes the Formation of a Four-way Junction at Replication Forks* , 2001, The Journal of Biological Chemistry.

[95]  S. Keeney,et al.  Mechanism and control of meiotic recombination initiation. , 2001, Current topics in developmental biology.

[96]  R. Wells,et al.  The intrinsically unstable life of DNA triplet repeats associated with human hereditary disorders. , 2001, Progress in nucleic acid research and molecular biology.

[97]  Takanori Yamagata,et al.  Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10 , 2000, Nature Genetics.

[98]  J. Dalgaard,et al.  swi1 and swi3 Perform Imprinting, Pausing, and Termination of DNA Replication in S. pombe , 2000, Cell.

[99]  D. Livingston,et al.  The impact of lagging strand replication mutations on the stability of CAG repeat tracts in yeast. , 2000, Genetics.

[100]  A. Kornberg Ten Commandments: Lessons from the Enzymology of DNA Replication , 2000, Journal of bacteriology.

[101]  T. R. Ward,et al.  Ribosomal DNA Replication Fork Barrier and HOT1Recombination Hot Spot: Shared Sequences but Independent Activities , 2000, Molecular and Cellular Biology.

[102]  J. Schvartzman,et al.  Premature termination of DNA replication in plasmids carrying two inversely oriented ColE1 origins. , 2000, Journal of molecular biology.

[103]  R. Bambara,et al.  Inhibition of Flap Endonuclease 1 by Flap Secondary Structure and Relevance to Repeat Sequence Expansion* , 2000, The Journal of Biological Chemistry.

[104]  K. Usdin,et al.  DNA repeat expansions and human disease , 2000, Cellular and Molecular Life Sciences CMLS.

[105]  S. Sandler Multiple genetic pathways for restarting DNA replication forks in Escherichia coli K-12. , 2000, Genetics.

[106]  M. Raymond,et al.  RNase H Overproduction Corrects a Defect at the Level of Transcription Elongation during rRNA Synthesis in the Absence of DNA Topoisomerase I in Escherichia coli * , 2000, The Journal of Biological Chemistry.

[107]  B. Michel Replication fork arrest and DNA recombination. , 2000, Trends in biochemical sciences.

[108]  S. Kowalczykowski Initiation of genetic recombination and recombination-dependent replication. , 2000, Trends in biochemical sciences.

[109]  R. G. Lloyd,et al.  Modulation of RNA Polymerase by (p)ppGpp Reveals a RecG-Dependent Mechanism for Replication Fork Progression , 2000, Cell.

[110]  Myron F. Goodman,et al.  The importance of repairing stalled replication forks , 2000, Nature.

[111]  Jin-Qiu Zhou,et al.  The Saccharomyces Pif1p DNA Helicase and the Highly Related Rrm3p Have Opposite Effects on Replication Fork Progression in Ribosomal DNA , 2000, Cell.

[112]  R. Sinden,et al.  DNA Polymerase III Proofreading Mutants Enhance the Expansion and Deletion of Triplet Repeat Sequences in Escherichia coli * , 2000, The Journal of Biological Chemistry.

[113]  M. Schlissel,et al.  A Tail of Histone Acetylation and DNA Recombination , 2000, Science.

[114]  M. Krangel,et al.  A role for histone acetylation in the developmental regulation of VDJ recombination. , 2000, Science.

[115]  H. Niki,et al.  Dynamic organization of chromosomal DNA in Escherichia coli. , 2000, Genes & development.

[116]  S. Gangloff,et al.  Replication fork pausing and recombination or "gimme a break". , 2000, Genes & development.

[117]  S. Sandler,et al.  Role of PriA in Replication Fork Reactivation inEscherichia coli , 2000, Journal of bacteriology.

[118]  O. Hyrien Mechanisms and consequences of replication fork arrest. , 2000, Biochimie.

[119]  B. Balakumaran,et al.  CGG/CCG repeats exhibit orientation-dependent instability and orientation-independent fragility in Saccharomyces cerevisiae. , 2000, Human molecular genetics.

[120]  A. Harel-Bellan,et al.  Triple Helix Forming Oligonucleotides , 2012, Perspectives in Antisense Science.

[121]  M. Dixon,et al.  Inhibition of FEN-1 processing by DNA secondary structure at trinucleotide repeats. , 1999, Molecular cell.

[122]  É. Massé,et al.  R-loop-dependent hypernegative supercoiling in Escherichia coli topA mutants preferentially occurs at low temperatures and correlates with growth inhibition. , 1999, Journal of molecular biology.

[123]  M. Salas,et al.  Resolution of head‐on collisions between the transcription machinery and bacteriophage Φ29 DNA polymerase is dependent on RNA polymerase translocation , 1999, The EMBO journal.

[124]  O. Hyrien,et al.  Developmental regulation of replication fork pausing in Xenopus laevis ribosomal RNA genes. , 1999, Journal of molecular biology.

[125]  P. White,et al.  Stability of the Human Fragile X (CGG)n Triplet Repeat Array inSaccharomyces cerevisiae Deficient in Aspects of DNA Metabolism , 1999, Molecular and Cellular Biology.

[126]  J. Dalgaard,et al.  Orientation of DNA replication establishes mating-type switching pattern in S. pombe , 1999, Nature.

[127]  D. Livingston,et al.  The effect of DNA replication mutations on CAG tract stability in yeast. , 1999, Genetics.

[128]  J. Feigon,et al.  Multistranded DNA structures. , 1999, Current opinion in structural biology.

[129]  J. Haber,et al.  Multiple Pathways of Recombination Induced by Double-Strand Breaks in Saccharomyces cerevisiae , 1999, Microbiology and Molecular Biology Reviews.

[130]  Y. Fujita,et al.  The replication checkpoint control in Bacillus subtilis: identification of a novel RTP‐binding sequence essential for the replication fork arrest after induction of the stringent response , 1999, Molecular microbiology.

[131]  M. Pandolfo,et al.  Sticky DNA: self-association properties of long GAA.TTC repeats in R.R.Y triplex structures from Friedreich's ataxia. , 1999, Molecular cell.

[132]  D. Bussiere,et al.  Termination of DNA replication of bacterial and plasmid chromosomes , 1999, Molecular microbiology.

[133]  P. Silver,et al.  Elimination of replication block protein Fob1 extends the life span of yeast mother cells. , 1999, Molecular cell.

[134]  C. McMurray,et al.  DNA secondary structure: a common and causative factor for expansion in human disease. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[135]  R. Wells,et al.  Expansion and Deletion of Triplet Repeat Sequences inEscherichia coli Occur on the Leading Strand of DNA Replication* , 1999, The Journal of Biological Chemistry.

[136]  N. Claij,et al.  Microsatellite instability in human cancer: a prognostic marker for chemotherapy? , 1999, Experimental cell research.

[137]  S. Mirkin Structure and Biology of H DNA , 1999 .

[138]  J. Haber Mating-type gene switching in Saccharomyces cerevisiae. , 2015, Annual review of genetics.

[139]  T. Kobayashi,et al.  Expansion and contraction of ribosomal DNA repeats in Saccharomyces cerevisiae: requirement of replication fork blocking (Fob1) protein and the role of RNA polymerase I. , 1998, Genes & development.

[140]  J. Schvartzman,et al.  DnaB Helicase Is Unable to Dissociate RNA-DNA Hybrids , 1998, The Journal of Biological Chemistry.

[141]  H. Paulson,et al.  Genetic Instabilities and Hereditary Neurological Diseases , 1998 .

[142]  R. Richards,et al.  Fragile sites still breaking. , 1998, Trends in genetics : TIG.

[143]  K. H. Wolfe,et al.  Base Composition Skews, Replication Orientation, and Gene Orientation in 12 Prokaryote Genomes , 1998, Journal of Molecular Evolution.

[144]  Michael Ruogu Zhang,et al.  Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. , 1998, Molecular biology of the cell.

[145]  S. Ehrlich,et al.  RuvAB Acts at Arrested Replication Forks , 1998, Cell.

[146]  J. Miret,et al.  Orientation-dependent and sequence-specific expansions of CTG/CAG trinucleotide repeats in Saccharomyces cerevisiae. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[147]  B. Peter,et al.  The Structure of Supercoiled Intermediates in DNA Replication , 1998, Cell.

[148]  S. Elledge,et al.  Recovery from DNA replicational stress is the essential function of the S-phase checkpoint pathway. , 1998, Genes & development.

[149]  A. S. Krasilnikov,et al.  Transcription through a simple DNA repeat blocks replication elongation , 1998, The EMBO journal.

[150]  K. Usdin NGG-triplet repeats form similar intrastrand structures: implications for the triplet expansion diseases. , 1998, Nucleic acids research.

[151]  Ronald W. Davis,et al.  A genome-wide transcriptional analysis of the mitotic cell cycle. , 1998, Molecular cell.

[152]  A. Nicolas,et al.  Mitotic recombination and localized DNA double-strand breaks are induced after 8-methoxypsoralen and UVA irradiation in Saccharomyces cerevisiae , 1998, Current Genetics.

[153]  M. Pandolfo,et al.  Inhibitory Effects of Expanded GAA·TTC Triplet Repeats from Intron I of the Friedreich Ataxia Gene on Transcription and Replicationin Vivo * , 1998, The Journal of Biological Chemistry.

[154]  R. Sinden,et al.  Trinucleotide repeat DNA structures: dynamic mutations from dynamic DNA. , 1998, Current opinion in structural biology.

[155]  C. López-estraño,et al.  Co-localization of polar replication fork barriers and rRNA transcription terminators in mouse rDNA. , 1998, Journal of molecular biology.

[156]  E. Bradbury,et al.  GAA instability in Friedreich's Ataxia shares a common, DNA-directed and intraallelic mechanism with other trinucleotide diseases. , 1998, Molecular cell.

[157]  V. Zakian,et al.  Expansion and length-dependent fragility of CTG repeats in yeast. , 1998, Science.

[158]  N. Walworth,et al.  S-phase-specific activation of Cds1 kinase defines a subpathway of the checkpoint response in Schizosaccharomyces pombe. , 1998, Genes & development.

[159]  R. Moyzis,et al.  Solution structures of the Huntington's disease DNA triplets, (CAG)n. , 1998, Journal of biomolecular structure & dynamics.

[160]  B. Stillman,et al.  The DNA replication fork in eukaryotic cells. , 1998, Annual review of biochemistry.

[161]  D. Livingston,et al.  Expansions of CAG repeat tracts are frequent in a yeast mutant defective in Okazaki fragment maturation. , 1998, Human molecular genetics.

[162]  S. Mirkin,et al.  Trinucleotide repeats affect DNA replication in vivo , 1997, Nature Genetics.

[163]  D. MacAlpine,et al.  Developmental regulation of DNA replication: replication fork barriers and programmed gene amplification in Tetrahymena thermophila , 1997, Molecular and cellular biology.

[164]  Margarita Salas,et al.  Bacteriophage φ29 DNA replication arrest caused by codirectional collisions with the transcription machinery , 1997, The EMBO journal.

[165]  N. W. Davis,et al.  The complete genome sequence of Escherichia coli K-12. , 1997, Science.

[166]  F. Grummt,et al.  Termination of Mammalian rDNA Replication: Polar Arrest of Replication Fork Movement by Transcription Termination Factor TTF-I , 1997, Cell.

[167]  D. MacAlpine,et al.  Type I elements mediate replication fork pausing at conserved upstream sites in the Tetrahymena thermophila ribosomal DNA minichromosome , 1997, Molecular and cellular biology.

[168]  Dmitry A. Gordenin,et al.  Repeat expansion — all in flap? , 1997, Nature Genetics.

[169]  S. Mirkin,et al.  Characteristic enrichment of DNA repeats in different genomes. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[170]  A. Nicolas,et al.  Clustering of meiotic double-strand breaks on yeast chromosome III. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[171]  K. Nordström,et al.  Inactivation of the replication‐termination system affects the replication mode and causes unstable maintenance of plasmid R1 , 1997, Molecular microbiology.

[172]  Alain Malafosse,et al.  Dodecamer repeat expansion in cystatin B gene in progressive myoclonus epilepsy , 1997, Nature.

[173]  K. Woodford,et al.  DNA Secondary Structures and the Evolution of Hypervariable Tandem Arrays* , 1997, The Journal of Biological Chemistry.

[174]  J. Stavenhagen,et al.  Stability of a CTG/CAG trinucleotide repeat in yeast is dependent on its orientation in the genome , 1997, Molecular and cellular biology.

[175]  A. S. Krasilnikov,et al.  Mechanisms of triplex-caused polymerization arrest. , 1997, Nucleic acids research.

[176]  I. Haworth,et al.  At physiological pH, d(CCG)15 forms a hairpin containing protonated cytosines and a distorted helix. , 1997, Biochemistry.

[177]  D. Paslier,et al.  Human Chromosomal Fragile Site FRA16B Is an Amplified AT-Rich Minisatellite Repeat , 1997, Cell.

[178]  Recherche Agronomique Deletions at stalled replication forks occur by two different pathways , 1997 .

[179]  C. Schildkraut,et al.  Role of the EBNA-1 Protein in Pausing of Replication Forks in the Epstein-Barr Virus Genome* , 1996, The Journal of Biological Chemistry.

[180]  R. G. Lloyd,et al.  The RecG branch migration protein of Escherichia coli dissociates R-loops. , 1996, Journal of molecular biology.

[181]  D. Bogenhagen,et al.  Termination within Oligo(dT) Tracts in Template DNA by DNA Polymerase γ Occurs with Formation of a DNA Triplex Structure and Is Relieved by Mitochondrial Single-stranded DNA-binding Protein* , 1996, The Journal of Biological Chemistry.

[182]  M. Zheng,et al.  Genetically unstable CXG repeats are structurally dynamic and have a high propensity for folding. An NMR and UV spectroscopic study. , 1996, Journal of molecular biology.

[183]  K. Morikawa,et al.  Structure of a replication-terminator protein complexed with DNA , 1996, Nature.

[184]  J. Alonso,et al.  The ColE1 Unidirectional Origin Acts as a Polar Replication Fork Pausing Site* , 1996, The Journal of Biological Chemistry.

[185]  A. C. Chinault,et al.  Large domains of apparent delayed replication timing associated with triplet repeat expansion at FRAXA and FRAXE. , 1996, American journal of human genetics.

[186]  Myron F. Goodman,et al.  Gene Targeting in Rat Embryo Fibroblasts Promoted by the Polyomavirus Large T Antigen Associated With Neurological Diseases , 1996 .

[187]  C. Newlon,et al.  DNA Replication Fork Pause Sites Dependent on Transcription , 1996, Science.

[188]  R. Gellibolian,et al.  Cloning, characterization and properties of plasmids containing CGG triplet repeats from the FMR-1 gene. , 1996, Journal of molecular biology.

[189]  T. Kobayashi,et al.  A yeast gene product, Fob1 protein, required for both replication fork blocking and recombinational hotspot activities , 1996, Genes to cells : devoted to molecular & cellular mechanisms.

[190]  D. Bussiere,et al.  The dimer-dimer interaction surface of the replication terminator protein of Bacillus subtilis and termination of DNA replication. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[191]  R. Sinden,et al.  Alternative structures in duplex DNA formed within the trinucleotide repeats of the myotonic dystrophy and fragile X loci. , 1996, Biochemistry.

[192]  P. Patel,et al.  Friedreich's Ataxia: Autosomal Recessive Disease Caused by an Intronic GAA Triplet Repeat Expansion , 1996, Science.

[193]  S. Bron,et al.  Identification and characterization of a novel type of replication terminator with bidirectional activity on the Bacillus subtilis theta plasmid pLS20 , 1996, Molecular microbiology.

[194]  R. Wells Molecular Basis of Genetic Instability of Triplet Repeats (*) , 1996, The Journal of Biological Chemistry.

[195]  M. Cashel,et al.  The stringent response , 1996 .

[196]  N. Arnheim,et al.  Stability of intrastrand hairpin structures formed by the CAG/CTG class of DNA triplet repeats associated with neurological diseases. , 1996, Nucleic acids research.

[197]  R. Wells,et al.  Pausing of DNA Synthesis in Vitro at Specific Loci in CTG and CGG Triplet Repeats from Human Hereditary Disease Genes (*) , 1995, The Journal of Biological Chemistry.

[198]  K. Woodford,et al.  CGG repeats associated with DNA instability and chromosome fragility form structures that block DNA synthesis in vitro. , 1995, Nucleic acids research.

[199]  N. Kleckner,et al.  Sequence non‐specific double‐strand breaks and interhomolog interactions prior to double‐strand break formation at a meiotic recombination hot spot in yeast. , 1995, The EMBO journal.

[200]  B. Michel,et al.  Transcription‐induced deletions in Escherichia coli plasmids , 1995, Molecular microbiology.

[201]  I. Haworth,et al.  The trinucleotide repeat sequence d(GTC)15 adopts a hairpin conformation. , 1995, Nucleic acids research.

[202]  G. Schroth,et al.  Occurrence of potential cruciform and H-DNA forming sequences in genomic DNA. , 1995, Nucleic acids research.

[203]  J. Mitchell,et al.  Compact structures of d(CNG)n oligonucleotides in solution and their possible relevance to fragile X and related human genetic diseases. , 1995, Nucleic acids research.

[204]  Keiichi Ohshima,et al.  Expansion and deletion of CTG repeats from human disease genes are determined by the direction of replication in E. coli , 1995, Nature Genetics.

[205]  S. S. Smith,et al.  Hairpins are formed by the single DNA strands of the fragile X triplet repeats: structure and biological implications. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[206]  A. Marquis Gacy,et al.  Trinucleotide repeats that expand in human disease form hairpin structures in vitro , 1995, Cell.

[207]  G. Cadwell,et al.  Escherichia coli RecG and RecA proteins in R‐loop formation. , 1995, The EMBO journal.

[208]  L. Liu,et al.  Overexpression of RNase H partially complements the growth defect of an Escherichia coli delta topA mutant: R-loop formation is a major problem in the absence of DNA topoisomerase I. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[209]  B. Alberts,et al.  Head-on collision between a DNA replication apparatus and RNA polymerase transcription complex , 1995, Science.

[210]  D. Bussiere,et al.  Crystal structure of the replication terminator protein from B. subtiiis at 2.6 Å , 1995, Cell.

[211]  T. Baker Replication arrest , 1995, Cell.

[212]  D. Bastia,et al.  Termination of DNA replication in vitro: requirement for stereospecific interaction between two dimers of the replication terminator protein of Bacillus subtilis and with the terminator site to elicit polar contrahelicase and fork impedance. , 1995, The EMBO journal.

[213]  T. Horiuchi,et al.  Recombinational rescue of the stalled DNA replication fork: a model based on analysis of an Escherichia coli strain with a chromosome region difficult to replicate , 1995, Journal of bacteriology.

[214]  A. Lévine,et al.  A checkpoint involving RTP, the replication terminator protein, arrests replication downstream of the origin during the Stringent Response in Bacillus subtilis , 1995, Molecular microbiology.

[215]  A. Goldman,et al.  Meiotic recombination hotspots. , 1995, Annual review of genetics.

[216]  E. Lanka,et al.  DNA processing reactions in bacterial conjugation. , 1995, Annual review of biochemistry.

[217]  S. Warren,et al.  Trinucleotide repeat expansion and human disease. , 1995, Annual review of genetics.

[218]  P. Modrich,et al.  Mismatch repair, genetic stability, and cancer. , 1994, Science.

[219]  P. Hanawalt Transcription-coupled repair and human disease. , 1994, Science.

[220]  J. Sogo,et al.  Replication fork barriers in the Xenopus rDNA. , 1994, Nucleic acids research.

[221]  R. Sinden DNA Structure and Function , 1994 .

[222]  D. Bastia,et al.  The replication terminator protein of the gram-positive bacterium Bacillus subtilis functions as a polar contrahelicase in gram-negative Escherichia coli. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[223]  K. Woodford,et al.  A novel K(+)-dependent DNA synthesis arrest site in a commonly occurring sequence motif in eukaryotes. , 1994, The Journal of biological chemistry.

[224]  H. Hiasa,et al.  Tus prevents overreplication of oriC plasmid DNA. , 1994, The Journal of biological chemistry.

[225]  R. Fleischmann,et al.  Mutations of two P/WS homologues in hereditary nonpolyposis colon cancer , 1994, Nature.

[226]  J. Lebowitz,et al.  Transcription induces the formation of a stable RNA.DNA hybrid in the immunoglobulin alpha switch region. , 1994, The Journal of biological chemistry.

[227]  T. Kobayashi,et al.  The DNA replication fork blocked at the Ter site may be an entrance for the RecBCD enzyme into duplex DNA , 1994, Journal of bacteriology.

[228]  D. Le Paslier,et al.  Implications of FRA16A structure for the mechanism of chromosomal fragile site genesis. , 1994, Science.

[229]  S. Warren,et al.  Cryptic and polar variation of the fragile X repeat could result in predisposing normal alleles , 1994, Cell.

[230]  B. S. Rao,et al.  Pausing of simian virus 40 DNA replication fork movement in vivo by (dG-dA)n.(dT-dC)n tracts. , 1994, Gene.

[231]  R. Fleischmann,et al.  Mutation of a mutL homolog in hereditary colon cancer. , 1994, Science.

[232]  D. Ward,et al.  Mutation in the DNA mismatch repair gene homologue hMLH 1 is associated with hereditary non-polyposis colon cancer , 1994, Nature.

[233]  R. Deonier,et al.  Mutational and physical analysis of F plasmid traY protein binding to oriT , 1994, Molecular microbiology.

[234]  M Lichten,et al.  Meiosis-induced double-strand break sites determined by yeast chromatin structure. , 1994, Science.

[235]  L. Liu,et al.  Hypernegative supercoiling of the DNA template during transcription elongation in vitro. , 1994, The Journal of biological chemistry.

[236]  R. Sauer,et al.  Major groove DNA recognition by β-sheets: the ribbon-helix-helix family of gene regulatory proteins , 1994 .

[237]  E. Stanbridge,et al.  Defects in replication fidelity of simple repeated sequences reveal a new mutator mechanism for oncogenesis. , 1994, Cold Spring Harbor symposia on quantitative biology.

[238]  Robin J. Leach,et al.  Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer , 1993, Cell.

[239]  Bert Vogelstein,et al.  Hypermutability and mismatch repair deficiency in RER+ tumor cells , 1993, Cell.

[240]  H. Wang,et al.  A single trinucleotide, 5'AGC3'/5'GCT3', of the triplet-repeat disease genes confers metal ion-induced non-B DNA structure. , 1993, Nucleic acids research.

[241]  S. Mirkin,et al.  Suicidal nucleotide sequences for DNA polymerization. , 1993, The EMBO journal.

[242]  B. Alberts,et al.  The DNA replication fork can pass RNA polymerase without displacing the nascent transcript , 1993, Nature.

[243]  P. Lewis,et al.  Protein–nucleoside contacts in the interaction between the replication terminator protein of Bacillus subtilis and the DNA terminator , 1993, Molecular microbiology.

[244]  A. D. McWilliams,et al.  A gene with specific and global effects on recombination of sequences from tandemly repeated genes in Saccharomyces cerevisiae. , 1993, Genetics.

[245]  R. D. Little,et al.  Initiation and termination of DNA replication in human rRNA genes , 1993, Molecular and cellular biology.

[246]  T. Kunkel Slippery DNA and diseases , 1993, Nature.

[247]  T. Canfield,et al.  Association of fragile X syndrome with delayed replication of the FMR1 gene , 1993, Cell.

[248]  Darryl Shibata,et al.  Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis , 1993, Nature.

[249]  Manish S. Shah,et al.  A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes , 1993, Cell.

[250]  N. Copeland,et al.  The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. , 1993, Cell.

[251]  S. Mirkin,et al.  Intramolecular DNA triplexes: unusual sequence requirements and influence on DNA polymerization. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[252]  S. French,et al.  Consequences of replication fork movement through transcription units in vivo. , 1992, Science.

[253]  D. Lockshon,et al.  The arrest of replication forks in the rDNA of yeast occurs independently of transcription , 1992, Cell.

[254]  R. Wake,et al.  Definition and polarity of action of DNA replication terminators in Bacillus subtilis. , 1992, Journal of Molecular Biology.

[255]  C. Newlon,et al.  Replication forks pause at yeast centromeres , 1992, Molecular and cellular biology.

[256]  D. Lilley,et al.  DNA replication, 2nd edn , 1992 .

[257]  H. Hiasa,et al.  Differential inhibition of the DNA translocation and DNA unwinding activities of DNA helicases by the Escherichia coli Tus protein. , 1992, The Journal of biological chemistry.

[258]  C. Amemiya,et al.  Myotonic dystrophy mutation: an unstable CTG repeat in the 3' untranslated region of the gene. , 1992, Science.

[259]  David E. Housman,et al.  Molecular basis of myotonic dystrophy: Expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member , 1992, Cell.

[260]  T. Hill,et al.  Arrest of bacterial DNA replication. , 1992, Annual review of microbiology.

[261]  C. Schildkraut,et al.  Role of EBNA-1 in arresting replication forks at the Epstein-Barr virus oriP family of tandem repeats , 1991, Molecular and cellular biology.

[262]  B. Michel,et al.  The replication termination signal terB of the Escherichia coli chromosome is a deletion hot spot. , 1991, The EMBO journal.

[263]  R. Sinden,et al.  Preferential DNA secondary structure mutagenesis in the lagging strand of replication in E. coli , 1991, Nature.

[264]  R I Richards,et al.  Mapping of DNA instability at the fragile X to a trinucleotide repeat sequence p(CCG)n , 1991, Science.

[265]  S. Séror,et al.  The stringent response blocks DNA replication outside the ori region in Bacillus subtilis and at the origin in Escherichia coli. , 1991, Journal of molecular biology.

[266]  J. Sutcliffe,et al.  Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome , 1991, Cell.

[267]  N. Heintz,et al.  Position and orientation-dependent effects of a eukaryotic Z-triplex DNA motif on episomal DNA replication in COS-7 cells. , 1991, The Journal of biological chemistry.

[268]  H. Manor,et al.  Formation of DNA triplexes accounts for arrests of DNA synthesis at d(TC)n and d(GA)n tracts. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[269]  U. Hübscher,et al.  Eukaryotic DNA replication. Enzymes and proteins acting at the fork. , 1990, European journal of biochemistry.

[270]  J. Griffin,et al.  Induction of RNA-stabilized DMA conformers by transcription of an immunoglobulin switch region , 1990, Nature.

[271]  M. Riley,et al.  The Bacterial Chromosome , 1990 .

[272]  T. Hill,et al.  Escherichia coli Tus protein acts to arrest the progression of DNA replication forks in vitro. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[273]  T. Cech,et al.  Monovalent cation-induced structure of telomeric DNA: The G-quartet model , 1989, Cell.

[274]  A. Kornberg,et al.  Escherichia coli replication termination protein impedes the action of helicases. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[275]  D. Bastia,et al.  The replication terminator protein of E. coli is a DNA sequence-specific contra-helicase , 1989, Cell.

[276]  B. Alberts,et al.  Sequence-specific pausing during in vitro DNA replication on double-stranded DNA templates. , 1989, The Journal of biological chemistry.

[277]  C. Schildkraut,et al.  The Epstein-Barr virus origin of plasmid replication, oriP, contains both the initiation and termination sites of DNA replication , 1989, Cell.

[278]  G. Roeder,et al.  Transcription by RNA polymerase I stimulates mitotic recombination in Saccharomyces cerevisiae , 1989, Molecular and cellular biology.

[279]  T. Kobayashi,et al.  Evidence of a ter specific binding protein essential for the termination reaction of DNA replication in Escherichia coli. , 1989, The EMBO journal.

[280]  P. Lewis,et al.  A protein involved in termination of chromosome replication in Bacillus subtilis binds specifically to the terC site , 1989, Journal of bacteriology.

[281]  D. Bastia,et al.  A host-encoded DNA-binding protein promotes termination of plasmid replication at a sequence-specific replication terminus. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[282]  T. Hill,et al.  Termination sites T1 and T2 from the Escherichia coli chromosome inhibit DNA replication in ColE1-derived plasmids , 1989, Journal of bacteriology.

[283]  T. Hill,et al.  tus, the trans-acting gene required for termination of DNA replication in Escherichia coli, encodes a DNA-binding protein. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[284]  Rodney Rothstein,et al.  Elevated recombination rates in transcriptionally active DNA , 1989, Cell.

[285]  H. Manor,et al.  (dT-dC)n and (dG-dA)n tracts arrest single stranded DNA replication in vitro. , 1989, Nucleic acids research.

[286]  D. Lilley Structural isomerization in DNA: the formation of cruciform structures in supercoiled DNA molecules , 1989 .

[287]  W. L. Fangman,et al.  A replication fork barrier at the 3′ end of yeast ribosomal RNA genes , 1988, Cell.

[288]  T. Hill,et al.  Identification of the DNA sequence from the E. coli terminus region that halts replication forks , 1988, Cell.

[289]  M. Hidaka,et al.  A consensus sequence of three DNA replication terminus sites on the E. coli chromosome is highly homologous to the terR sites of the R6K plasmid , 1988, Cell.

[290]  J. Huberman,et al.  University of Groningen Organization of Replication of Ribosomal DNA in Saccharomyces cerevisiae , 2017 .

[291]  B. S. Rao,et al.  Pausing in simian virus 40 DNA replication by a sequence containing (dG-dA)27.(dT-dC)27. , 1988, Nucleic acids research.

[292]  B. J. Brewer,et al.  When polymerases collide: Replication and the transcriptional organization of the E. coli chromosome , 1988, Cell.

[293]  Leroy F. Liu,et al.  Transcription generates positively and negatively supercoiled domains in the template , 1988, Cell.

[294]  T. Hill,et al.  Termination of DNA replication in Escherichia coli requires a trans-acting factor , 1988, Journal of bacteriology.

[295]  W. L. Fangman,et al.  The localization of replication origins on ARS plasmids in S. cerevisiae , 1987, Cell.

[296]  P. Hanawalt,et al.  Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene , 1987, Cell.

[297]  J. Wang,et al.  Supercoiling of the DNA template during transcription. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[298]  F. Neidhardt,et al.  Escherichia Coli and Salmonella: Typhimurium Cellular and Molecular Biology , 1987 .

[299]  B. de Massy,et al.  Inhibition of replication forks exiting the terminus region of the Escherichia coli chromosome occurs at two loci separated by 5 min. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[300]  J. Henson,et al.  The terminus region of the Escherichia coli chromosome contains two separate loci that exhibit polar inhibition of replication. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[301]  F. Alt,et al.  Developmentally controlled and tissue-specific expression of unrearranged VH gene segments , 1985, Cell.

[302]  D. Chang,et al.  Priming of human mitochondrial DNA replication occurs at the light-strand promoter. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[303]  J. Karam,et al.  A Polymorphic Locus Near the Human Insulin Gene Is Associated with Insulin-dependent Diabetes Melliitus , 1984, Diabetes.

[304]  A. Rich,et al.  The chemistry and biology of left-handed Z-DNA. , 1984, Annual review of biochemistry.

[305]  H. Tabak,et al.  A nonanucleotide sequence involved in promotion of ribosomal RNA synthesis and RNA priming of DNA replication in yeast mitochondria. , 1982, Nucleic acids research.

[306]  G. Bernardi,et al.  Replication origins are associated with transcription initiation sequences in the mitochondrial genome of yeast. , 1982, The EMBO journal.

[307]  M. DePamphilis,et al.  Specific sequences in native DNA that arrest synthesis by DNA polymerase alpha. , 1982, The Journal of biological chemistry.

[308]  D. A. Clayton,et al.  Template-directed pausing in in vitro DNA synthesis by DNA polymerase a from Drosophila melanogaster embryos. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[309]  T. Itoh,et al.  Formation of an RNA primer for initiation of replication of ColE1 DNA by ribonuclease H. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[310]  J. Hearst,et al.  Pauses at positions of secondary structure during in vitro replication of single-stranded fd bacteriophage DNA by T4 DNA polymerase. , 1980, Analytical biochemistry.

[311]  P. Wassarman,et al.  Replication of eukaryotic chromosomes: a close-up of the replication fork. , 1980, Annual review of biochemistry.

[312]  M. Challberg,et al.  The effect of template secondary structure on vaccinia DNA polymerase. , 1979, The Journal of biological chemistry.

[313]  E. A. Morgan,et al.  Genetics of bacterial ribosomes. , 1977, Annual review of genetics.

[314]  M. Gefter,et al.  Studies on the mechanism of enzymatic DNA elongation by Escherichia coli DNA polymerase II. , 1976, Journal of molecular biology.

[315]  B. Strauss,et al.  A model for replication repair in mammalian cells. , 1976, Journal of molecular biology.