Design of Experiments in Nonlinear Models: Asymptotic Normality, Optimality Criteria and Small-Sample Properties
暂无分享,去创建一个
[1] H. Cramér. Mathematical methods of statistics , 1947 .
[2] A. Wald. Note on the Consistency of the Maximum Likelihood Estimate , 1949 .
[3] T. Koopmans,et al. The Identification of Structural Characteristics , 1950 .
[4] E. L. Lehmann,et al. Theory of point estimation , 1950 .
[5] G. Elfving. Optimum Allocation in Linear Regression Theory , 1952 .
[6] Margaret J. Robertson,et al. Design and Analysis of Experiments , 2006, Handbook of statistics.
[7] Le Cam,et al. On some asymptotic properties of maximum likelihood estimates and related Bayes' estimates , 1953 .
[8] A. D. L. Garza,et al. Spacing of Information in Polynomial Regression , 1954 .
[9] C. Stein. Efficient Nonparametric Testing and Estimation , 1956 .
[10] Philip Wolfe,et al. An algorithm for quadratic programming , 1956 .
[11] D. Lindley. On a Measure of the Information Provided by an Experiment , 1956 .
[12] J. E. Kelley,et al. The Cutting-Plane Method for Solving Convex Programs , 1960 .
[13] J. Kiefer,et al. The Equivalence of Two Extremum Problems , 1960, Canadian Journal of Mathematics.
[14] E. Parzen. On Estimation of a Probability Density Function and Mode , 1962 .
[15] J. Kiefer,et al. Two More Criteria Equivalent to D-Optimality of Designs , 1962 .
[16] Max Halperin,et al. Confidence Interval Estimation in Non‐Linear Regression , 1963 .
[17] E. Nadaraya. On Estimating Regression , 1964 .
[18] G. S. Watson,et al. Smooth regression analysis , 1964 .
[19] D. Cox,et al. An Analysis of Transformations , 1964 .
[20] H. O. Hartley,et al. Exact confidence regions for the parameters in non-linear regression laws , 1964 .
[21] W. J. Studden,et al. Optimal Experimental Designs , 1966 .
[22] Arthur F. Veinott,et al. The Supporting Hyperplane Method for Unimodal Programming , 1967, Oper. Res..
[23] Andrej Pázman,et al. Design of Physical Experiments (Statistical Methods) , 1968, 1968.
[24] Corwin L. Atwood,et al. Optimal and Efficient Designs of Experiments , 1969 .
[25] R. Jennrich. Asymptotic Properties of Non-Linear Least Squares Estimators , 1969 .
[26] H. Wynn. The Sequential Generation of $D$-Optimum Experimental Designs , 1970 .
[27] V. V. Fedorov,et al. The Design of Experiments in the Multiresponse Case , 1971 .
[28] W. J. Studden. Elfving's Theorem and Optimal Designs for Quadratic Loss , 1971 .
[29] M. J. Box. Bias in Nonlinear Estimation , 1971 .
[30] W. J. Studden,et al. Theory Of Optimal Experiments , 1972 .
[31] H. Wynn. Results in the Theory and Construction of D‐Optimum Experimental Designs , 1972 .
[32] G. McCormick,et al. The Gradient Projection Method under Mild Differentiability Conditions , 1972 .
[33] E. Schlossmacher. An Iterative Technique for Absolute Deviations Curve Fitting , 1973 .
[34] Second-order approximation of the autocorrelation matrix function , 1973 .
[35] C. Atwood. Sequences Converging to $D$-Optimal Designs of Experiments , 1973 .
[36] S. Silvey,et al. A geometric approach to optimal design theory , 1973 .
[37] D. Cox,et al. Planning Experiments for Discriminating between Models , 1974 .
[38] J. Kiefer. General Equivalence Theory for Optimum Designs (Approximate Theory) , 1974 .
[39] R. C. St. John,et al. D-Optimality for Regression Designs: A Review , 1975 .
[40] D. Titterington. Optimal design: Some geometrical aspects of D-optimality , 1975 .
[41] A. Atkinson,et al. Optimal design : Experiments for discriminating between several models , 1975 .
[42] Geoffrey S. Watson,et al. The inefficiency of least squares , 1975 .
[43] A. Atkinson,et al. The design of experiments for discriminating between two rival models , 1975 .
[44] C. J. Stone,et al. Adaptive Maximum Likelihood Estimators of a Location Parameter , 1975 .
[45] Mordecai Avriel,et al. Nonlinear programming , 1976 .
[46] Corwin L. Atwood,et al. Convergent Design Sequences, for Sufficiently Regular Optimality Criteria , 1976 .
[47] H. Wynn. OPTIMUM DESIGNS FOR FINITE POPULATIONS SAMPLING , 1977 .
[48] N. Z. Shor. Cut-off method with space extension in convex programming problems , 1977, Cybernetics.
[49] Z. Galil,et al. Comparison of Simplex Designs for Quadratic Mixture Models , 1977 .
[50] Martin B. Zarrop,et al. Optimal experiment design for dynamic system identification , 1977 .
[51] Changbao Wu,et al. Some iterative procedures for generating nonsingular optimal designs , 1978 .
[52] H. Robbins,et al. Strong consistency of least squares estimates in multiple regression , 1978 .
[53] Changbao Wu,et al. Some Algorithmic Aspects of the Theory of Optimal Designs , 1978 .
[54] D. Titterington. Estimation of Correlation Coefficients by Ellipsoidal Trimming , 1978 .
[55] H. Robbins,et al. Strong consistency of least squares estimates in multiple regression. , 1979, Proceedings of the National Academy of Sciences of the United States of America.
[56] S. Silvey,et al. An algorithm for optimal designs on a design space , 1978 .
[57] N. Sundaraij. A METHOD FOR CONFIDENCE REGIONS FOR NONLINEAR MODELS , 1978 .
[58] H. Wynn,et al. The Convergence of General Step-Length Algorithms for Regular Optimum Design Criteria , 1978 .
[59] Peter D. H. Hill,et al. A Review of Experimental Design Procedures for Regression Model Discrimination , 1978 .
[60] E. Parzen. Nonparametric Statistical Data Modeling , 1979 .
[61] L. G. H. Cijan. A polynomial algorithm in linear programming , 1979 .
[62] D.G. Dudley,et al. Dynamic system identification experiment design and data analysis , 1979, Proceedings of the IEEE.
[63] E. Aiyoshi,et al. Necessary conditions for min-max problems and algorithms by a relaxation procedure , 1980 .
[64] J. Kiefer,et al. Time- and Space-Saving Computer Methods, Related to Mitchell's DETMAX, for Finding D-Optimum Designs , 1980 .
[65] S. Silvey,et al. A sequentially constructed design for estimating a nonlinear parametric function , 1980 .
[66] M. Todd,et al. The Ellipsoid Method: A Survey , 1980 .
[67] Wayne A. Fuller,et al. Least Squares Estimation When the Covariance Matrix and Parameter Vector are Functionally Related , 1980 .
[68] Andrej Pázman,et al. Singular experimental designs (standard and HILBEKT-space approaches) , 1980 .
[69] G. Pflug. Stochastic Approximation Methods for Constrained and Unconstrained Systems - Kushner, HJ.; Clark, D.S. , 1980 .
[70] D. G. Watts,et al. Relative Curvature Measures of Nonlinearity , 1980 .
[71] V. Fedorov,et al. Convex design theory 1 , 1980 .
[72] Characterizing the Consistent Directions of Least Squares Estimates , 1980 .
[73] Corwin L. Atwood. Convergent Design Sequences, for Sufficiently Regular Optimality Criteria, II: Singular Case , 1980 .
[74] Changbao Wu,et al. Asymptotic Theory of Nonlinear Least Squares Estimation , 1981 .
[75] L. Lovász,et al. Geometric Algorithms and Combinatorial Optimization , 1981 .
[76] Petre Stoica,et al. Comparison of some instrumental variable methods - Consistency and accuracy aspects , 1981, Autom..
[77] T. Lai,et al. Least Squares Estimates in Stochastic Regression Models with Applications to Identification and Control of Dynamic Systems , 1982 .
[78] P. Bickel. On Adaptive Estimation , 1982 .
[79] H. P. Wynn,et al. OPTIMUM SUBMEASURES WITH APPLICATION TO FINITE POPULATION SAMPLING , 1982 .
[80] Michael J. Todd. On Minimum Volume Ellipsoids Containing Part of a Given Ellipsoid , 1982, Math. Oper. Res..
[81] Eric Walter,et al. Identifiability of State Space Models , 1982 .
[82] W. Welch. Branch-and-Bound Search for Experimental Designs Based on D Optimality and Other Criteria , 1982 .
[83] D. G. Watts,et al. Accounting for Intrinsic Nonlinearity in Nonlinear Regression Parameter Inference Regions , 1982 .
[84] Jaroslava Mikulecká. On a hybrid experimental design , 1983, Kybernetika.
[85] B. Torsney. A Moment Inequality and Monotonicity of an Algorithm , 1983 .
[86] T. Söderström,et al. Instrumental variable methods for system identification , 1983 .
[87] Further Results on the Consistent Directions of Least Squares Estimators , 1983 .
[88] M. E. Johnson,et al. Some Guidelines for Constructing Exact D-Optimal Designs on Convex Design Spaces , 1983 .
[89] P. McCullagh,et al. Generalized Linear Models , 1984 .
[90] Sandor Vajda,et al. An extended ode solver for sensitivity calculations , 1984, Comput. Chem..
[91] P. Green. Iteratively reweighted least squares for maximum likelihood estimation , 1984 .
[92] Andrej Pázman. Probability distribution of the multivariate nonlinear least squares estimates , 1984, Kybernetika.
[93] H. Müller. Optimal designs for nonparametric kernel regression , 1984 .
[94] A. Pázman. Nonlinear least squares - uniqueness versus ambiguity , 1984 .
[95] Changbao Wu,et al. Asymptotic inference from sequential design in a nonlinear situation , 1985 .
[96] D. G. Watts,et al. A Quadratic Design Criterion for Precise Estimation in Nonlinear Regression Models , 1985 .
[97] Shie-Shien Yang. A Smooth Nonparametric Estimator of a Quantile Function , 1985 .
[98] Philip Hougaard. Saddlepoint approximations for curved exponential families , 1985 .
[99] Naum Zuselevich Shor,et al. Minimization Methods for Non-Differentiable Functions , 1985, Springer Series in Computational Mathematics.
[100] D. Titterington,et al. Inference and sequential design , 1985 .
[101] Andrej Pázman,et al. Foundations of Optimum Experimental Design , 1986 .
[102] B. Torsney. Moment inequalities via optimal design theory , 1986 .
[103] Begnaud Francis Hildebrand,et al. Introduction to numerical analysis: 2nd edition , 1987 .
[104] B. Jørgensen. Exponential Dispersion Models , 1987 .
[105] D. Andrews. CONSISTENCY IN NONLINEAR ECONOMETRIC MODELS: A GENERIC UNIFORM LAW OF LARGE NUMBERS , 1987 .
[106] Eric Walter,et al. Identifiability of parametric models , 1987 .
[107] Lennart Ljung,et al. System Identification: Theory for the User , 1987 .
[108] A. Gallant,et al. Nonlinear Statistical Models , 1988 .
[109] Peter J. Rousseeuw,et al. Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.
[110] Petre Stoica,et al. Decentralized Control , 2018, The Control Systems Handbook.
[111] S. Schwartz,et al. An accelerated sequential algorithm for producing D -optimal designs , 1989 .
[112] Johan Fellman,et al. An empirical study of a class of iterative searches for optimal designs , 1989 .
[113] Donald W. Hearn,et al. Lagrangian dual ascent by generalized linear programming , 1989 .
[114] Guido del Pino,et al. The Unifying Role of Iterative Generalized Least Squares in Statistical Algorithms , 1989 .
[115] Werner G. Müller,et al. batch sequential design for a nonlinear estimation problem , 1989 .
[116] Valerii V. Fedorov,et al. Optimal design with bounded density: optimization algorithms of the exchange type , 1989 .
[117] D. Pollard,et al. Cube Root Asymptotics , 1990 .
[118] Alfred O. Hero,et al. Lower bounds for parametric estimation with constraints , 1990, IEEE Trans. Inf. Theory.
[119] J. P. Vila,et al. Exact Experimental Designs Via Stochastic Optimization for Nonlinear Regression Models , 1990 .
[120] R. Kass. Nonlinear Regression Analysis and its Applications , 1990 .
[121] W. Newey,et al. Uniform Convergence in Probability and Stochastic Equicontinuity , 1991 .
[122] Emo Welzl,et al. Smallest enclosing disks (balls and ellipsoids) , 1991, New Results and New Trends in Computer Science.
[123] J. Magnus,et al. Matrix Differential Calculus with Applications in Statistics and Econometrics , 1991 .
[124] Guy Chavent. New size×curvature conditions for strict quasiconvexity of sets , 1991 .
[125] D. Andrews. Generic Uniform Convergence , 1992, Econometric Theory.
[126] V. Spokoinyi,et al. On asymptotically optimal sequential experimental design , 1992 .
[127] GEOMETRY OF THE NONLINEAR REGRESSION WITH PRIOR , 1992 .
[128] N. Shor,et al. New algorithms for constructing optimal circumscribed and inscribed ellipsoids , 1992 .
[129] Andrej Pázman. A classification of nonlinear regression models and parameter confidence regions , 1992, Kybernetika.
[130] Andrej Pázman,et al. Nonlinear experimental design based on the distribution of estimators , 1992 .
[131] J. Hiriart-Urruty,et al. Convex analysis and minimization algorithms , 1993 .
[132] Leonid Khachiyan,et al. On the complexity of approximating the maximal inscribed ellipsoid for a polytope , 1993, Math. Program..
[133] H. Kushner,et al. Stochastic approximation with averaging of the iterates: Optimal asymptotic rate of convergence for , 1993 .
[134] K. Chaloner,et al. Optimum experimental designs for properties of a compartmental model. , 1993, Biometrics.
[135] Xavier Joulia,et al. A general strategy for parameter estimation in differential—algebraic systems , 1993 .
[136] Higher Dimensional Nonlinear Regression-A Statistical Use of the Riemannian Curvature Tensor , 1993 .
[137] D. Firth. Bias reduction of maximum likelihood estimates , 1993 .
[138] Tze Leung Lai,et al. Asymptotic Properties of Nonlinear Least Squares Estimates in Stochastic Regression Models , 1994 .
[139] Herman J. Bierens,et al. Topics in advanced econometrics , 1997 .
[140] K. Do,et al. Efficient and Adaptive Estimation for Semiparametric Models. , 1994 .
[141] Yurii Nesterov,et al. Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.
[142] Yurii Nesterov,et al. Complexity estimates of some cutting plane methods based on the analytic barrier , 1995, Math. Program..
[143] Scott L. Zeger,et al. [Inference Based on Estimating Functions in the Presence of Nuisance Parameters]: Rejoinder , 1995 .
[144] T. J. Mitchell,et al. Exploratory designs for computational experiments , 1995 .
[145] Rainer Schwabe,et al. Designing Experiments for Additive Nonlinear Models , 1995 .
[146] L. Pronzato,et al. Identifiabilities and nonlinearities , 1995 .
[147] Yurii Nesterov,et al. New variants of bundle methods , 1995, Math. Program..
[148] A. Ivanov. Asymptotic Theory of Nonlinear Regression , 1996 .
[149] Rainer Schwabe,et al. Optimum Designs for Multi-Factor Models , 1996 .
[150] Jon A. Wellner,et al. Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .
[151] O. Nelles,et al. An Introduction to Optimization , 1996, IEEE Antennas and Propagation Magazine.
[152] J. Simonoff. Multivariate Density Estimation , 1996 .
[153] P. Spreij. Probability and Measure , 1996 .
[154] Andrej Pázman,et al. A Dirac-function method for densities of nonlinear statistics and for marginal densities in nonlinear regression , 1996 .
[155] Leonid Khachiyan,et al. Rounding of Polytopes in the Real Number Model of Computation , 1996, Math. Oper. Res..
[156] H. Neudecker,et al. Kantorovich inequalities and efficiency comparisons for several classes of estimators in linear models , 1997 .
[157] B. Lindsay,et al. On second-order optimality of the observed Fisher information , 1997 .
[158] Shu-Cherng Fang,et al. On the entropic regularization method for solving min-max problems with applications , 1997, Math. Methods Oper. Res..
[159] Harold J. Kushner,et al. Stochastic Approximation Algorithms and Applications , 1997, Applications of Mathematics.
[160] Eric Walter,et al. Identification of Parametric Models: from Experimental Data , 1997 .
[161] C. Heyde,et al. Quasi-likelihood and its application , 1997 .
[162] A. Atkinson,et al. Designing for a Response Transformation Parameter , 1997 .
[163] R. Schwabe. Maximin efficient designs another view at D-optimality , 1997 .
[164] D. Harville. Matrix Algebra From a Statistician's Perspective , 1998 .
[165] B. Torsney,et al. MV-Optimization in Weighted Linear Regression , 1998 .
[166] Luc Pronzato,et al. Sequential Design and Active Control , 1998 .
[167] Approximate Densities of Two Bias-Corrected Nonlinear LS Estimators , 1998 .
[168] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[169] Yinyu Ye,et al. Interior point algorithms: theory and analysis , 1997 .
[170] Andrej Pázman,et al. Applications of necessary and sufficient conditions for maximin efficient designs , 1998 .
[171] Stephen P. Boyd,et al. Determinant Maximization with Linear Matrix Inequality Constraints , 1998, SIAM J. Matrix Anal. Appl..
[172] Margaret H. Wright,et al. The interior-point revolution in constrained optimization , 1998 .
[173] B. C. Ng,et al. On the Cramer-Rao bound under parametric constraints , 1998, IEEE Signal Processing Letters.
[174] Inchi Hu,et al. On sequential designs in nonlinear problems , 1998 .
[175] A. V. D. Vaart. Asymptotic Statistics: Delta Method , 1998 .
[176] Jean-Louis Goffin,et al. Convergence of a simple subgradient level method , 1999, Math. Program..
[177] Steven E. Rigdon,et al. Model-Oriented Design of Experiments , 1997, Technometrics.
[178] Efficiency Bounds for Product Designs in Linear Models , 1999 .
[179] Luc Pronzato,et al. Adaptive control for sequential design , 2000 .
[180] John E. Mitchell,et al. An ellipsoid algorithm for equality-constrained nonlinear programs , 2001, Comput. Oper. Res..
[181] Vladimir N. Vapnik,et al. The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.
[182] S. Geer. Empirical Processes in M-Estimation , 2000 .
[183] Toby J. Mitchell,et al. An Algorithm for the Construction of “D-Optimal” Experimental Designs , 2000, Technometrics.
[184] José Mario Martínez,et al. Nonmonotone Spectral Projected Gradient Methods on Convex Sets , 1999, SIAM J. Optim..
[185] Eugene Demidenko,et al. Is this the least squares estimate , 2000 .
[186] Arkadi Nemirovski,et al. Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.
[187] Ilya Molchanov,et al. Variational Calculus in the Space of Measures and Optimal Design , 2001 .
[188] Thomas L. Marzetta,et al. Parameter estimation problems with singular information matrices , 2001, IEEE Trans. Signal Process..
[189] Trevor Hastie,et al. The Elements of Statistical Learning , 2001 .
[190] Andrej Pázman,et al. Optimal design of experiments subject to correlated errors , 2001 .
[191] A. Pázman. CONCENTRATION SETS, ELFVING SETS AND NORMS IN OPTIMUM DESIGN , 2001 .
[192] Felipe Cucker,et al. On the mathematical foundations of learning , 2001 .
[193] Rainer Schwabe,et al. A Note on Optimal Bounded Designs , 2001 .
[194] Andrej Pázman,et al. Using densities of estimators to compare pharmacokinetic experiments , 2001, Comput. Biol. Medicine.
[195] Holger Dette,et al. Minimax Optimal Designs for Nonparametric Regression — A Further Optimality Property of the Uniform Distribution , 2001 .
[196] A. Vaart. The statistical work of Lucien Le Cam , 2002 .
[197] Ilya S. Molchanov,et al. Steepest descent algorithms in a space of measures , 2002, Stat. Comput..
[198] A. Pázman. Results on nonlinear least squares estimators under nonlinear equality constraints , 2002 .
[199] Sarah E. Gergel,et al. Collecting Spatial Data at Broad Scales , 2002 .
[200] Robert F. Phillips,et al. Least absolute deviations estimation via the EM algorithm , 2002, Stat. Comput..
[201] A. Pázman. Optimal design of nonlinear experiments with parameter constraints , 2002 .
[202] Yin Zhang,et al. On Numerical Solution of the Maximum Volume Ellipsoid Problem , 2003, SIAM J. Optim..
[203] A. Tsybakov,et al. Introduction à l'estimation non-paramétrique , 2003 .
[204] Andrej Pázman,et al. Measures for designs in experiments with correlated errors , 2003 .
[205] Peter L. Bartlett,et al. Prediction Algorithms: Complexity, Concentration and Convexity , 2003 .
[206] R. Schaback. Mathematical Results Concerning Kernel Techniques , 2003 .
[207] E. Walter,et al. Interval Analysis for Guaranteed Nonlinear Parameter Estimation , 2003 .
[208] E. Walter,et al. Multi-Output Suppport Vector Regression , 2003 .
[209] Henry P. Wynn,et al. Maximum Entropy Sampling and General Equivalence Theory , 2004 .
[210] Andrej Pázman,et al. Simultaneous Choice of Design and Estimator in Nonlinear Regression with Parameterized Variance , 2004 .
[211] A. C. Atkinson,et al. Some Bayesian Optimum Designs for Response Transformation in Nonlinear Models with Nonconstant Variance , 2004 .
[213] A. Berlinet,et al. Reproducing kernel Hilbert spaces in probability and statistics , 2004 .
[214] B. Ripley,et al. Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.
[215] Peng Sun,et al. Computation of Minimum Volume Covering Ellipsoids , 2002, Oper. Res..
[216] Radoslav Harman. Minimal efficiency of designs under the class of orthogonally invariant information criteria , 2004 .
[217] Yurii Nesterov,et al. Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.
[218] B. Anderson,et al. ROBUST IDENTIFICATION OF , 2005 .
[219] Emmanuel Vazquez,et al. Modélisation comportementale de systèmes non-linéaires multivariables par méthodes à noyaux et applications , 2005 .
[220] Andrej Pázman,et al. On the irregular behavior of LS estimators for asymptotically singular designs , 2006 .
[221] Andrej Pázman,et al. Designs in nonlinear regression by stochastic minimization of functionals of the mean square error matrix , 2006 .
[222] Asymptotic criteria for designs in nonlinear regression with model errors , 2006 .
[223] Zhengyuan Zhu,et al. Spatial sampling design under the infill asymptotic framework , 2006 .
[224] Shaohua Pan,et al. Smoothing method for minimizing the sum of the r largest functions , 2007, Optim. Methods Softw..
[225] J. Vila,et al. Optimal designs based on exact confidence regions for parameter estimation of a nonlinear regression model , 2007 .
[226] Luc Pronzato,et al. Improvements on removing nonoptimal support points in D-optimum design algorithms , 2007, 0706.4394.
[227] Edgar den Boef,et al. Efficient Line Search Methods for Convex Functions , 2007, SIAM J. Optim..
[228] Maciej Patan,et al. D-optimal design of a monitoring network for parameter estimation of distributed systems , 2007, J. Glob. Optim..
[229] Holger Dette,et al. On the number of support points of maximin and Bayesian optimal designs , 2007, 0708.1901.
[230] Michael J. Todd,et al. On Khachiyan's algorithm for the computation of minimum-volume enclosing ellipsoids , 2007, Discret. Appl. Math..
[231] Michel Minoux,et al. Programmation Mathématique. Théorie et Algorithmes , 2008 .
[232] Peng Sun,et al. Linear convergence of a modified Frank–Wolfe algorithm for computing minimum-volume enclosing ellipsoids , 2008, Optim. Methods Softw..
[233] Radoslav Harman,et al. Computing c-optimal experimental designs using the simplex method of linear programming , 2008, Comput. Stat. Data Anal..
[234] Radoslav Harman,et al. Approximate D-optimal designs of experiments on the convex hull of a finite set of information matrices , 2009 .
[235] Aarnout Brombacher,et al. Probability... , 2009, Qual. Reliab. Eng. Int..
[236] Drew Seils,et al. Optimal design , 2007 .
[237] Andrej Pázman,et al. Asymptotic Normality of Nonlinear Least Squares under Singular Experimental Designs , 2009 .
[238] John Stufken,et al. SUPPORT POINTS OF LOCALLY OPTIMAL DESIGNS FOR NONLINEAR MODELS WITH TWO PARAMETERS , 2009, 0903.0728.
[239] Ben Torsney,et al. W-Iterations and Ripples Therefrom , 2009 .
[240] Min Yang,et al. On the de la Garza phenomenon , 2009, 0912.3861.
[241] Yaming Yu. Monotonic convergence of a general algorithm for computing optimal designs , 2009, 0905.2646.
[242] Andrej Pázman,et al. A Note on the Relationship between Two Approaches to Optimal Design under Correlation , 2010 .
[243] Yaming Yu,et al. Strict monotonicity and convergence rate of Titterington's algorithm for computing D-optimal designs , 2010, Comput. Stat. Data Anal..
[244] Anthony C. Atkinson. Optimum Experimental Design , 2011, International Encyclopedia of Statistical Science.
[245] Yaming Yu,et al. D-optimal designs via a cocktail algorithm , 2009, Stat. Comput..
[246] Holger Dette,et al. A note on the de la Garza phenomenon for locally optimal designs , 2011, 1105.3575.
[247] Luc Pronzato,et al. Design of computer experiments: space filling and beyond , 2011, Statistics and Computing.
[248] Jane Ruth Temple. Adaptive designs for dose-finding trials , 2012 .
[249] Steven G. Gilmour,et al. Optimum design of experiments for statistical inference , 2012 .
[250] O. Barndorff-Nielsen. Information and Exponential Families in Statistical Theory , 1980 .
[251] Roland Gautier,et al. Some results on optimal allocation in two { stepsequential designBy , 2022 .