Nonlinear maximum principles for dissipative linear nonlocal operators and applications

We obtain a family of nonlinear maximum principles for linear dissipative nonlocal operators, that are general, robust, and versatile. We use these nonlinear bounds to provide transparent proofs of global regularity for critical SQG and critical d-dimensional Burgers equations. In addition we give applications of the nonlinear maximum principle to the global regularity of a slightly dissipative anti-symmetric perturbation of 2D incompressible Euler equations and generalized fractional dissipative 2D Boussinesq equations.

[1]  Edriss S. Titi,et al.  Euler equations for incompressible ideal fluids , 2007 .

[2]  Peter Constantin,et al.  Hölder continuity of solutions of supercritical dissipative hydrodynamic transport equations , 2007, math/0701594.

[3]  Tosio Kato,et al.  Remarks on the breakdown of smooth solutions for the 3-D Euler equations , 1984 .

[4]  Taoufik Hmidi,et al.  On the global well-posedness of the Euler-Boussinesq system with fractional dissipation , 2009, 0903.3747.

[5]  R. Shterenberg,et al.  Blow up and regularity for fractal Burgers equation , 2008, 0804.3549.

[6]  Alexander Kiselev,et al.  Global regularity for the critical dispersive dissipative surface quasi-geostrophic equation , 2009, 0908.0925.

[7]  L. Caffarelli,et al.  Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation , 2006, math/0608447.

[8]  Antonio Córdoba,et al.  Communications in Mathematical Physics A Maximum Principle Applied to Quasi-Geostrophic Equations , 2004 .

[9]  Peter Constantin,et al.  Behavior of solutions of 2D quasi-geostrophic equations , 1999 .

[10]  Peter Constantin,et al.  Global regularity for a modified critical dissipative quasi-geostrophic equation , 2008, 0803.1318.

[11]  Peter Constantin,et al.  Euler Equations, Navier-Stokes Equations and Turbulence , 2006 .

[12]  H. Kozono,et al.  Limiting Case of the Sobolev Inequality in BMO,¶with Application to the Euler Equations , 2000 .

[13]  Luis Silvestre,et al.  Eventual regularization for the slightly supercritical quasi-geostrophic equation , 2008, 0812.4901.

[14]  Thomas Y. Hou,et al.  GLOBAL WELL-POSEDNESS OF THE VISCOUS BOUSSINESQ EQUATIONS , 2004 .

[15]  P. Constantin,et al.  Inviscid Models Generalizing the Two-dimensional Euler and the Surface Quasi-geostrophic Equations , 2010, 1010.1506.

[16]  C. Cao,et al.  Global regularity for the 2D anisotropic Boussinesq Equations with vertical dissipation , 2011, 1108.2678.

[17]  Peter Constantin,et al.  Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation , 2008 .

[18]  Peter Constantin,et al.  On the Euler equations of incompressible fluids , 2007 .

[19]  F. Rousset,et al.  Global Well-Posedness for Euler–Boussinesq System with Critical Dissipation , 2010 .

[20]  E. Titi,et al.  Global Well-posedness for The 2D Boussinesq System Without Heat Diffusion and With Either Anisotropic Viscosity or Inviscid Voigt-$α$ Regularization , 2010 .

[21]  Michael Dabkowski,et al.  Eventual Regularity of the Solutions to the Supercritical Dissipative Quasi-Geostrophic Equation , 2010, 1007.2970.

[22]  F. Nazarov,et al.  Variation on a theme of caffarelli and vasseur , 2009, 0908.0923.

[23]  F. Ricci Book Review: Harmonic analysis real-variable methods, orthogonality, and oscillatory integrals , 1999 .

[24]  A. Volberg,et al.  Global well-posedness for the critical 2D dissipative quasi-geostrophic equation , 2007 .

[25]  Marius Paicu,et al.  GLOBAL EXISTENCE RESULTS FOR THE ANISOTROPIC BOUSSINESQ SYSTEM IN DIMENSION TWO , 2008, 0809.4984.

[26]  A. Majda,et al.  Vorticity and incompressible flow , 2001 .

[27]  Jonathan A. Parker,et al.  Euler equations ∗ , 2007 .

[28]  J. Chemin,et al.  Fluides parfaits incompressibles , 2018, Astérisque.

[29]  Timothy S. Murphy,et al.  Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .

[30]  P. Constantin Singular, weak and absent: Solutions of the Euler equations , 2008 .

[31]  F. Rousset,et al.  Global well-posedness for a Boussinesq- Navier-Stokes System with critical dissipation , 2009, 0904.1536.

[32]  Andrew J. Majda,et al.  Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar , 1994 .

[33]  Dongho Chae,et al.  Global regularity for the 2D Boussinesq equations with partial viscosity terms , 2006 .