Finite Element Methods for the Temperature in Composite Media with Contact Resistance

We consider a heat diffusion problem inside a composite medium. The contact resistance at the interface of constitutive materials allows for jumps of the temperature field. The transmission conditions need to be handled carefully and efficiently. The main concerns are accuracy and feasibility. Hybrid dual formulations are recommended here as the most popular mixed finite elements well adapted to account for the discontinuity of the temperature field. We therefore write the discretization of the heat problem by mixed finite elements and perform its numerical analysis. Of course, applying Lagrangian finite elements is possible in simple composite media but it turns out to be problematic for complex geometries. Nevertheless, we study the convergence of this finite element method to highlight some particularities related to the model under consideration and point out the effect of the contact resistance on the accuracy. Illustrative numerical experiments are finally provided to assess the theoretical findings.RésuméNous considérons une équation qui modélise la diffusion de la température dans une mousse de graphite contenant des capsules de sel. Les conditions de transition de la température entre le graphite et le sel doivent être traitées correctement. Nous effectuons l’analyse de ce modèle et prouvons qu’il est bien posé. Puis nous en proposons une discrétisation par éléments finis et effectuons l’analyse a priori du problème discret. Quelques expériences numériques confirment l’intérêt de cette approche.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  Christine Bernardi,et al.  Discr'etisations variationnelles de probl`emes aux limites elliptiques , 2004 .

[3]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[4]  Frédéric Hecht,et al.  New development in freefem++ , 2012, J. Num. Math..

[5]  Jean E. Roberts,et al.  Mixed and hybrid methods , 1991 .

[6]  Jean-Marie Emmanuel Bernard Density results in sobolev spaces whose elements vanish on a part of the boundary , 2011 .

[7]  R. Pohl,et al.  Thermal boundary resistance , 1989 .

[8]  Yasser Safa Simulation numérique des phénomènes thermiques et magnétohydrodynamiques dans une cellule de Hall-Héroult , 2005 .

[9]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[10]  C. Bernardi,et al.  A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .

[11]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[12]  Mejdi Azaïez,et al.  A substructuring method for phase change modelling in hybrid media , 2013 .

[13]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[14]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[15]  David Jerison,et al.  The Neumann problem on Lipschitz domains , 1981 .

[16]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[17]  J. Lions,et al.  Problèmes aux limites non homogènes et applications , 1968 .

[18]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.