Globe Browsing: Contextualized Spatio-Temporal Planetary Surface Visualization

Results of planetary mapping are often shared openly for use in scientific research and mission planning. In its raw format, however, the data is not accessible to non-experts due to the difficulty in grasping the context and the intricate acquisition process. We present work on tailoring and integration of multiple data processing and visualization methods to interactively contextualize geospatial surface data of celestial bodies for use in science communication. As our approach handles dynamic data sources, streamed from online repositories, we are significantly shortening the time between discovery and dissemination of data and results. We describe the image acquisition pipeline, the pre-processing steps to derive a 2.5D terrain, and a chunked level-of-detail, out-of-core rendering approach to enable interactive exploration of global maps and high-resolution digital terrain models. The results are demonstrated for three different celestial bodies. The first case addresses high-resolution map data on the surface of Mars. A second case is showing dynamic processes, such as concurrent weather conditions on Earth that require temporal datasets. As a final example we use data from the New Horizons spacecraft which acquired images during a single flyby of Pluto. We visualize the acquisition process as well as the resulting surface data. Our work has been implemented in the OpenSpace software [8], which enables interactive presentations in a range of environments such as immersive dome theaters, interactive touch tables, and virtual reality headsets.

[1]  Alberto Pepe,et al.  WorldWide Telescope in Research and Education , 2012, 1201.1285.

[2]  Marina Daecher,et al.  Level Of Detail For 3d Graphics , 2016 .

[3]  俞勇 更多奇景还在NASA World Wind , 2006 .

[4]  T. Fong Ames Stereo Pipeline , 2013 .

[5]  Alexander Bock,et al.  OpenSpace: Public dissemination of space mission profiles , 2015, 2015 IEEE Scientific Visualization Conference (SciVis).

[6]  M. Broxton,et al.  The Ames Stereo Pipeline: Automated 3D Surface Reconstruction from Orbital Imagery , 2008 .

[7]  Patrick G. Hogan,et al.  NASA World Wind, Open Source 4D Geospatial Visualization Platform: *.NET & Java* for EDUCATION , 2006 .

[8]  Susan K. McMahon,et al.  Overview of the Planetary Data System , 1996 .

[9]  Charles Eames,et al.  Powers of ten , 2005 .

[10]  Paolo Cignoni,et al.  Planet-sized batched dynamic adaptive meshes (P-BDAM) , 2003, IEEE Visualization, 2003. VIS 2003..

[11]  Todd C. Patterson Google Earth as a (Not Just) Geography Education Tool , 2007 .

[12]  Kevin Hussey NASA's "Eyes On The Solar System:" A Real-time, 3D-Interactive Tool to Teach the Wonder of Planetary Science , 2014 .

[13]  G. Bruce Berriman,et al.  The Application of the Montage Image Mosaic Engine to the Visualization of Astronomical Images , 2017, 1702.02593.

[14]  Reinhard Koch,et al.  3-D surface reconstruction from stereoscopic image sequences , 1995, Proceedings of IEEE International Conference on Computer Vision.

[15]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[16]  Chi-Wing Fu,et al.  Very Large Scale Visualization Methods for Astrophysical Data , 2000, VisSym.

[17]  V. Salomonson,et al.  MODIS: advanced facility instrument for studies of the Earth as a system , 1989 .

[18]  Helmut Prendinger,et al.  AstroSim: Collaborative Visualization of an Astrophysics Simulation in Second Life , 2009, IEEE Computer Graphics and Applications.

[19]  William V. Baxter,et al.  HLODs for faster display of large static and dynamic environments , 2001, I3D '01.

[20]  Alexander Bock,et al.  Dynamic Scene Graph: Enabling Scaling, Positioning, and Navigation in the Universe , 2017, Comput. Graph. Forum.

[21]  Anders Ynnerman,et al.  Uniview - Visualizing the Universe , 2010, Eurographics.

[22]  J. P. Naiman,et al.  AstroBlend: An astrophysical visualization package for Blender , 2016, Astron. Comput..

[23]  Andrew E. Johnson,et al.  Planetary-Scale Terrain Composition , 2009, IEEE Transactions on Visualization and Computer Graphics.

[24]  Frank Warmerdam,et al.  The Geospatial Data Abstraction Library , 2008 .

[25]  Oskar Elek Rendering Parametrizable Planetary Atmospheres with Multiple Scattering in Real-Time , 2009 .

[26]  Chi-Wing Fu,et al.  A Transparently Scalable Visualization Architecture for Exploring the Universe , 2007, IEEE Transactions on Visualization and Computer Graphics.

[27]  Anders Ynnerman,et al.  Interactive visualization of 3d scanned mummies at public venues , 2016, Commun. ACM.

[28]  Marcus A. Magnor,et al.  Progress in Rendering and Modeling for Digital Planetariums , 2010, Eurographics.

[29]  R. Kirk,et al.  Mars Digital Image Model 2.1 Control Network , 2003 .

[30]  Thatcher Ulrich Rendering massive terrains using chunked level of detail , 2000 .

[31]  Patrick Cozzi,et al.  3D Engine Design for Virtual Globes , 2011 .

[32]  Carl F. Schueler,et al.  NPOESS VIIRS sensor design overview , 2002, Optics + Photonics.

[33]  A. McEwen,et al.  Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE) , 2007 .

[34]  David E. Smith,et al.  Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars , 2001 .

[35]  Alexander Bock,et al.  OpenSpace: An open-source astrovisualization framework , 2017, J. Open Source Softw..

[36]  C. H. Acton,et al.  Ancillary data services of NASA's Navigation and Ancillary Information Facility , 1996 .

[37]  Kenneth I. Joy,et al.  Real-time optimal adaptation for planetary geometry and texture: 4-8 tile hierarchies , 2005, IEEE Transactions on Visualization and Computer Graphics.

[38]  Kaichang Di,et al.  Rigorous Photogrammetric Processing of HiRISE Stereo Imagery for Mars Topographic Mapping , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[39]  Mark A. Duchaineau,et al.  ROAMing terrain: Real-time Optimally Adapting Meshes , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[40]  Hans-Christian Hege,et al.  Terrain Rendering using Spherical Clipmaps , 2006, EuroVis.

[41]  Frank Losasso,et al.  Geometry clipmaps , 2004, ACM Trans. Graph..

[42]  S. Smrekar,et al.  An overview of the Mars Reconnaissance Orbiter (MRO) science mission , 2007 .

[43]  P. Wolf,et al.  Elements of Photogrammetry(with Applications in GIS) , 2000 .

[44]  Badrish Chandramouli,et al.  Online visualization of geospatial stream data using the worldwide telescope , 2011, Proc. VLDB Endow..

[45]  D. Roy,et al.  An overview of MODIS Land data processing and product status , 2002 .

[46]  C. M. Lisse,et al.  The Pluto system: Initial results from its exploration by New Horizons , 2015, Science.

[47]  Zehdreh Allen-Lafayette,et al.  Flattening the Earth, Two Thousand Years of Map Projections , 1998 .

[48]  Chi-Wing Fu,et al.  Navigation techniques for large-scale astronomical exploration , 2006, Electronic Imaging.

[49]  M. Broxton,et al.  Ames Stereo Pipeline, NASA's Open Source Automated Stereogrammetry Software , 2010 .

[50]  Brian R. Kent,et al.  Visualizing Astronomical Data with Blender , 2013, ArXiv.

[51]  Zhou Xu,et al.  Analysis on OpenGIS Web Map Tile Service Implementation Standard , 2011 .