Crystal Structure of a Yeast Aquaporin at 1.15 Å Reveals a Novel Gating Mechanism

Atomic-resolution X-ray crystallography, functional analyses, and molecular dynamics simulations suggest a novel mechanism for the regulation of water flux through the yeast Aqy1 water channel.

[1]  Richard Neutze,et al.  Aquaporin gating. , 2006, Current opinion in structural biology.

[2]  Airlie J. McCoy,et al.  Solving structures of protein complexes by molecular replacement with Phaser , 2006, Acta crystallographica. Section D, Biological crystallography.

[3]  Rob Horsefield,et al.  High-resolution x-ray structure of human aquaporin 5 , 2008, Proceedings of the National Academy of Sciences.

[4]  D. Luu,et al.  Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins , 2003, Nature.

[5]  E. Steudle,et al.  Gating of water channels (aquaporins) in cortical cells of young corn roots by mechanical stimuli (pressure pulses): effects of ABA and of HgCl2. , 2004, Journal of experimental botany.

[6]  Yi Wang,et al.  Structural mechanism of plant aquaporin gating , 2006, Nature.

[7]  S. Harrison,et al.  Lipid–protein interactions in double-layered two-dimensional AQP0 crystals , 2005, Nature.

[8]  A. Dongari-Bagtzoglou,et al.  Immune defence mechanisms and immunoenhancement strategies in oropharyngeal candidiasis , 2008, Expert Reviews in Molecular Medicine.

[9]  Berk Hess,et al.  GROMACS 3.0: a package for molecular simulation and trajectory analysis , 2001 .

[10]  M. Loureiro-Dias,et al.  Membrane tension regulates water transport in yeast. , 2008, Biochimica et biophysica acta.

[11]  Doryaneh Ahmadpour,et al.  The MAPK Hog1p modulates Fps1p-dependent arsenite uptake and tolerance in yeast. , 2006, Molecular biology of the cell.

[12]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[13]  Robert M Stroud,et al.  Architecture and Selectivity in Aquaporins: 2.5 Å X-Ray Structure of Aquaporin Z , 2003, PLoS biology.

[14]  Graham Richards,et al.  Intermolecular forces , 1978, Nature.

[15]  Andreas Engel,et al.  Structural determinants of water permeation through aquaporin-1 , 2000, Nature.

[16]  Peter Agre,et al.  From structure to disease: the evolving tale of aquaporin biology , 2004, Nature Reviews Molecular Cell Biology.

[17]  Richard J Morris,et al.  ARP/wARP and automatic interpretation of protein electron density maps. , 2003, Methods in enzymology.

[18]  R. Friesner,et al.  Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides† , 2001 .

[19]  Wolfgang Kabsch,et al.  Automatic indexing of rotation diffraction patterns , 1988 .

[20]  N. Blom,et al.  Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. , 1999, Journal of molecular biology.

[21]  D. Fu,et al.  Structure of a glycerol-conducting channel and the basis for its selectivity. , 2000, Science.

[22]  D S Moss,et al.  Main-chain bond lengths and bond angles in protein structures. , 1993, Journal of molecular biology.

[23]  K. Takata,et al.  Aquaporins: water channel proteins of the cell membrane. , 2004, Progress in histochemistry and cytochemistry.

[24]  A. Teunissen,et al.  Aquaporin Expression Correlates with Freeze Tolerance in Baker's Yeast, and Overexpression Improves Freeze Tolerance in Industrial Strains , 2002, Applied and Environmental Microbiology.

[25]  M. Yeager,et al.  In Vivo Functional Assay of a Recombinant Aquaporin in Pichia pastoris , 2006, Applied and Environmental Microbiology.

[26]  J. Thevelein,et al.  Why do microorganisms have aquaporins? , 2006, Trends in microbiology.

[27]  M. Yasui,et al.  Rapid gating and anion permeability of an intracellular aquaporin , 1999, Nature.

[28]  Peter Agre,et al.  Structural basis for conductance by the archaeal aquaporin AqpM at 1.68 A. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[29]  E. Campbell,et al.  Crystal Structure of a Mammalian Voltage-Dependent Shaker Family K+ Channel , 2005, Science.

[30]  Bong-Gyoon Han,et al.  Structural basis of water-specific transport through the AQP1 water channel , 2001, Nature.

[31]  R. Neutze,et al.  Exceptional overproduction of a functional human membrane protein. , 2007, Protein expression and purification.

[32]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[33]  D C Rees,et al.  Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. , 1998, Science.

[34]  T. Gonen,et al.  Aquaporin-0 membrane junctions form upon proteolytic cleavage. , 2004, Journal of molecular biology.

[35]  L. Miercke,et al.  Crystal structure of the aquaglyceroporin PfAQP from the malarial parasite Plasmodium falciparum , 2008, Nature Structural &Molecular Biology.

[36]  S. Hohmann,et al.  Aquaporins in yeasts and filamentous fungi , 2005, Biology of the cell.

[37]  O. Berger,et al.  Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. , 1997, Biophysical journal.

[38]  B. Wallace,et al.  The pore dimensions of gramicidin A. , 1993, Biophysical journal.

[39]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[40]  Christophe Maurel,et al.  Plasma membrane of Beta vulgaris storage root shows high water channel activity regulated by cytoplasmic pH and a dual range of calcium concentrations , 2006 .

[41]  James E. Hall,et al.  pH and Calcium Regulate the Water Permeability of Aquaporin 0* , 2000, The Journal of Biological Chemistry.

[42]  D. Fu,et al.  Crystal Structure of AqpZ Tetramer Reveals Two Distinct Arg-189 Conformations Associated with Water Permeation through the Narrowest Constriction of the Water-conducting Channel* , 2006, Journal of Biological Chemistry.

[43]  C. Larsson,et al.  Water Transport Activity of the Plasma Membrane Aquaporin PM28A Is Regulated by Phosphorylation , 1998, Plant Cell.

[44]  James E. Hall,et al.  Comparison of the Water Transporting Properties of MIP and AQP1 , 1997, The Journal of Membrane Biology.

[45]  H. Berendsen,et al.  Essential dynamics of proteins , 1993, Proteins.

[46]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[47]  Tamir Gonen,et al.  Aquaporin-0 membrane junctions reveal the structure of a closed water pore , 2004, Nature.

[48]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[49]  Stefan Hohmann,et al.  Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation , 1999, Molecular microbiology.

[50]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[51]  Robert M Stroud,et al.  The channel architecture of aquaporin 0 at a 2.2-A resolution. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Stefan Hohmann,et al.  A Short Regulatory Domain Restricts Glycerol Transport through Yeast Fps1p* , 2003, The Journal of Biological Chemistry.

[53]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[54]  J. Cregg,et al.  Heterologous protein expression in the methylotrophic yeast Pichia pastoris. , 2000, FEMS microbiology reviews.

[55]  Helmut Grubmüller,et al.  The dynamics and energetics of water permeation and proton exclusion in aquaporins. , 2005, Current opinion in structural biology.