Molecular behaviors in thin film lubrication—Part two: Direct observation of the molecular orientation near the solid surface

[1]  Jianbin Luo,et al.  Molecular behaviors in thin film lubrication—Part one: Film formation for different polarities of molecules , 2019, Friction.

[2]  Jianbin Luo,et al.  Molecular behaviors in thin film lubrication—Part three: Superlubricity attained by polar and nonpolar molecules , 2018, Friction.

[3]  Hui Wu,et al.  High-Performance Real-Time SERS Detection with Recyclable Ag Nanorods@HfO2 Substrates. , 2016, ACS applied materials & interfaces.

[4]  Zhan Wang,et al.  Establishing quantitative structure tribo-ability relationship model using Bayesian regularization neural network , 2016 .

[5]  Mengjing Hou,et al.  Pinhole-Containing, Subnanometer-Thick Al2O3 Shell-Coated Ag Nanorods as Practical Substrates for Quantitative Surface-Enhanced Raman Scattering , 2016 .

[6]  Sanket A. Deshmukh,et al.  Macroscale superlubricity enabled by graphene nanoscroll formation , 2015, Science.

[7]  Jianbin Luo,et al.  In situ observation of the molecular ordering in the lubricating point contact area , 2014 .

[8]  Shin-Woong Kang,et al.  In Situ Homeotropic Alignment of Nematic Liquid Crystals Based on Photoisomerization of Azo‐Dye, Physical Adsorption of Aggregates, and Consequent Topographical Modification , 2013, Advanced materials.

[9]  J. Lagerwall,et al.  A new era for liquid crystal research: Applications of liquid crystals in soft matter nano-, bio- and microtechnology , 2012 .

[10]  Jianbin Luo,et al.  Investigation of the film formation mechanism of oil-in-water (O/W) emulsions , 2011 .

[11]  Chenhui Zhang,et al.  "Freezing" of nanoconfined fluids under an electric field. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[12]  Chenhui Zhang,et al.  Discussion on the Technique of Relative Optical Interference Intensity for the Measurement of Lubricant Film Thickness , 2009 .

[13]  Gregory P. Crawford,et al.  Liquid-crystal materials find a new order in biomedical applications. , 2007, Nature materials.

[14]  S. Wen,et al.  Tribological properties of nanoliquid film under an external electric field , 2004 .

[15]  J. Klafter,et al.  The nonlinear nature of friction , 2004, Nature.

[16]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[17]  H. Spikes,et al.  Langmuir-Blodgett Films in High-Pressure Rolling Contacts , 2003 .

[18]  U. Raviv,et al.  Fluidity of Bound Hydration Layers , 2002, Science.

[19]  Uri Raviv,et al.  Fluidity of water confined to subnanometre films , 2001, Nature.

[20]  S. Wen,et al.  Nano-tribological properties and mechanisms of the liquid crystal as an additive , 2001 .

[21]  J. Israelachvili,et al.  Putting Liquids Under Molecular-Scale Confinement , 2001, Science.

[22]  J. Israelachvili,et al.  Effects of Confinement and Shear on the Properties of Thin Films of Thermotropic Liquid Crystal , 1996 .

[23]  Hugh Spikes,et al.  Direct Observation of Boundary Layers , 1996 .

[24]  S. Wen,et al.  Thin film lubrication. Part I. Study on the transition between EHL and thin film lubrication using a relative optical interference intensity technique , 1996 .

[25]  Timothy J. Bunning,et al.  Orientation-On-Demand Thin Films: Curing of Liquid Crystalline Networks in ac Electric Fields , 1996, Science.

[26]  Jianping Gao,et al.  Nano-Elastohydrodynamics: Structure, Dynamics, and Flow in Nonuniform Lubricated Junctions , 1995, Science.

[27]  E. Kumacheva,et al.  Confinement-Induced Phase Transitions in Simple Liquids , 1995, Science.

[28]  J. Georges,et al.  Drainage of thin liquid films between relatively smooth surfaces , 1993 .

[29]  W. Rothschild,et al.  Mid- and low-frequency Raman spectra of stable and metastable crystalline states of the 4-n-alkyl-4'-cyanobiphenyl (n=9, 11, 12) liquid crystals , 1992 .

[30]  S. Granick,et al.  Motions and Relaxations of Confined Liquids , 1991, Science.

[31]  Wayne M. Gibbons,et al.  Surface-mediated alignment of nematic liquid crystals with polarized laser light , 1991, Nature.

[32]  M. Robbins,et al.  Origin of Stick-Slip Motion in Boundary Lubrication , 1990, Science.

[33]  G. W. Gray,et al.  The Raman Spectra of 4-Cyano- 4′ -pentylbiphenyl and 4-Cyano-4′-pentyl-d 11-biphenyl , 1976 .

[34]  C. Gähwiller Temperature Dependence of Flow Alignment in Nematic Liquid Crystals , 1972 .

[35]  J. S. Courtney‐Pratt,et al.  The area of real contact and the shear strength of monomolecular layers of a boundary lubricant , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[36]  K. Kobe The friction and lubrication of solids , 1951 .

[37]  W. Hardy,et al.  Boundary Lubrication. The Latent Period and Mixtures of Two Lubricants , 1923 .

[38]  William Bate Hardy,et al.  Boundary Lubrication. The Paraffin Series , 1922 .

[39]  G. Schatz,et al.  Electromagnetic fields around silver nanoparticles and dimers. , 2004, The Journal of chemical physics.

[40]  K. Nakano Scaling Law on Molecular Orientation and Effective Viscosity of Liquid-Crystalline Boundary Films , 2003 .

[41]  Jianbin Luo,et al.  THIN FILM LUBRICATION AND LUBRICATION MAP , 2000 .

[42]  S. Granick,et al.  Microscopic study of thin film lubrication and its contributions to macroscopic tribology , 1998 .

[43]  H. Spikes Boundary Lubrication and Boundary Films , 1993 .

[44]  G. J. Johnston,et al.  Paper V (iii) An Investigation into the Orientation of Lubricant Molecules in EHD Contacts , 1992 .

[45]  Hugh Spikes,et al.  The Measurement and Study of Very Thin Lubricant Films in Concentrated Contacts , 1991 .