Evolution of host innate defence: insights from Caenorhabditis elegans and primitive invertebrates

The genetically tractable model organism Caenorhabditis elegans was first used to model bacterial virulence in vivo a decade ago. Since then, great strides have been made in identifying the host response pathways that are involved in its defence against infection. Strikingly, C. elegans seems to detect, and respond to, infection without the involvement of its homologue of Toll-like receptors, in contrast to the well-established role for these proteins in innate immunity in mammals. What, therefore, do we know about host defence mechanisms in C. elegans and what can they tell us about innate immunity in higher organisms?

[1]  Li Li,et al.  Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial , 2006, Genome Biology.

[2]  F. Ausubel,et al.  Caenorhabditis elegans as a host for the study of host-pathogen interactions. , 2002, Current opinion in microbiology.

[3]  Rekha C. Patel,et al.  Differential regulation of HOXA9 expression by nuclear factor kappa B (NF-kappaB) and HOXA9. , 2008, Gene.

[4]  R. V. van Etten,et al.  GCK is essential to systemic inflammation and pattern recognition receptor signaling to JNK and p38 , 2009, Proceedings of the National Academy of Sciences.

[5]  Andrew D. Chisholm,et al.  Distinct Innate Immune Responses to Infection and Wounding in the C. elegans Epidermis , 2008, Current Biology.

[6]  Anne E Carpenter,et al.  High-throughput screen for novel antimicrobials using a whole animal infection model. , 2009, ACS chemical biology.

[7]  S. Wahl Transforming growth factor-beta: innately bipolar. , 2007, Current opinion in immunology.

[8]  M. Washington,et al.  Activation of β-catenin by carcinogenic Helicobacter pylori , 2005 .

[9]  N. Pujol,et al.  Antifungal innate immunity in C. elegans: PKCdelta links G protein signaling and a conserved p38 MAPK cascade. , 2009, Cell host & microbe.

[10]  F. Ausubel,et al.  DAF-16-Dependent Suppression of Immunity During Reproduction in Caenorhabditis elegans , 2008, Genetics.

[11]  C. Domon-Dell,et al.  Multiple regulatory regions control the complex expression pattern of the mouse Cdx2 homeobox gene. , 2008, Gastroenterology.

[12]  K. Anderson,et al.  Establishment of dorsal-ventral polarity in the Drosophila embryo: Genetic studies on the role of the Toll gene product , 1985, Cell.

[13]  P. Kuwabara,et al.  A novel bacterial pathogen, Microbacterium nematophilum, induces morphological change in the nematode C. elegans , 2000, Current Biology.

[14]  Jun Sun,et al.  Salmonella effector AvrA regulation of colonic epithelial cell inflammation by deubiquitination. , 2007, The American journal of pathology.

[15]  Mark A McPeek,et al.  Estimating metazoan divergence times with a molecular clock. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[16]  L. N. Fink,et al.  Epithelial cells prime the immune response to an array of gut‐derived commensals towards a tolerogenic phenotype through distinct actions of thymic stromal lymphopoietin and transforming growth factor‐β , 2007, Immunology.

[17]  Pierre Laurent-Puig,et al.  Crypt-restricted proliferation and commitment to the Paneth cell lineage following Apc loss in the mouse intestine , 2005, Development.

[18]  Yun Zhang,et al.  Neural-immune communication in Caenorhabditis elegans. , 2009, Cell host & microbe.

[19]  Y. Kohara,et al.  TLR-independent control of innate immunity in Caenorhabditis elegans by the TIR domain adaptor protein TIR-1, an ortholog of human SARM , 2004, Nature Immunology.

[20]  John F. G. Atack,et al.  RNA Interference , 2010, Methods in Molecular Biology.

[21]  O. Nybroe,et al.  Bacterial Feeders, the Nematode Caenorhabditis elegans and the Flagellate Cercomonas longicauda, have different Effects on Outcome of Competition among the Pseudomonas Biocontrol Strains CHA0 and DSS73 , 2009, Microbial Ecology.

[22]  David Gems,et al.  Shared Transcriptional Signature in Caenorhabditis elegans Dauer Larvae and Long-lived daf-2 Mutants Implicates Detoxification System in Longevity Assurance* , 2004, Journal of Biological Chemistry.

[23]  Valerie Reinke,et al.  p38 MAPK Regulates Expression of Immune Response Genes and Contributes to Longevity in C. elegans , 2006, PLoS genetics.

[24]  Frederick M. Ausubel,et al.  Role for β-catenin and HOX transcription factors in Caenorhabditis elegans and mammalian host epithelial-pathogen interactions , 2008, Proceedings of the National Academy of Sciences.

[25]  S. Brenner In the Beginning Was the Worm … , 2009, Genetics.

[26]  J. Thomas,et al.  Lethal paralysis of Caenorhabditis elegans by Pseudomonas aeruginosa. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Jonathan Hodgkin,et al.  Multiple Genes Affect Sensitivity of Caenorhabditis elegans to the Bacterial Pathogen Microbacterium nematophilum , 2005, Genetics.

[28]  Frederick M. Ausubel,et al.  A Conserved p38 MAP Kinase Pathway in Caenorhabditis elegans Innate Immunity , 2002, Science.

[29]  F. Ausubel,et al.  Programmed cell death mediated by ced-3 and ced-4 protects Caenorhabditis elegans from Salmonella typhimurium-mediated killing , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[30]  H. Jansson Adhesion of Conidia of Drechmeria coniospora to Caenorhabditis elegans Wild Type and Mutants. , 1994, Journal of nematology.

[31]  F. Ausubel,et al.  Requirement for a conserved Toll/interleukin-1 resistance domain protein in the Caenorhabditis elegans immune response. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Nektarios Tavernarakis,et al.  Genome-wide investigation reveals pathogen-specific and shared signatures in the response of Caenorhabditis elegans to infection , 2007, Genome Biology.

[33]  H. Clevers,et al.  The Paneth Cell α-Defensin Deficiency of Ileal Crohn’s Disease Is Linked to Wnt/Tcf-41 , 2007, The Journal of Immunology.

[34]  S. Akira,et al.  Pathogen Recognition and Innate Immunity , 2006, Cell.

[35]  Dean P. Jones,et al.  Commensal bacteria modulate cullin‐dependent signaling via generation of reactive oxygen species , 2007, The EMBO journal.

[36]  F. Ausubel,et al.  Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Leo X. Liu,et al.  Addresses: 1Laboratoire de Génétique et , 2022 .

[38]  D. Fay,et al.  The C. elegans Glycopeptide Hormone Receptor Ortholog, FSHR-1, Regulates Germline Differentiation and Survival , 2007, Current Biology.

[39]  Y. Shirai,et al.  Activation mechanisms of protein kinase C: maturation, catalytic activation, and targeting. , 2002, Journal of biochemistry.

[40]  L. Coussens,et al.  Inflaming gastrointestinal oncogenic programming. , 2008, Cancer cell.

[41]  J. Hodgkin,et al.  The ERK MAP Kinase Cascade Mediates Tail Swelling and a Protective Response to Rectal Infection in C. elegans , 2004, Current Biology.

[42]  L. Zon,et al.  BMP and Wnt specify hematopoietic fate by activation of the Cdx-Hox pathway. , 2008, Cell stem cell.

[43]  B. Finlay,et al.  Pathogenicity islands: a molecular toolbox for bacterial virulence , 2006, Cellular microbiology.

[44]  M. Ronen,et al.  A conserved role for a GATA transcription factor in regulating epithelial innate immune responses , 2006, Proceedings of the National Academy of Sciences.

[45]  Gary Ruvkun,et al.  DAF-16 Target Genes That Control C. elegans Life-Span and Metabolism , 2003, Science.

[46]  Frederick M Ausubel,et al.  Evolutionary perspectives on innate immunity from the study of Caenorhabditis elegans. , 2005, Current opinion in immunology.

[47]  G. Wu,et al.  Regulation of RELM/FIZZ isoform expression by Cdx2 in response to innate and adaptive immune stimulation in the intestine. , 2005, American journal of physiology. Gastrointestinal and liver physiology.

[48]  E. Stackebrandt,et al.  Biodiversity and systematics of nematode-bacterium entomopathogens , 2006 .

[49]  Zhouxin Shen,et al.  Activation of the Unfolded Protein Response Is Required for Defenses against Bacterial Pore-Forming Toxin In Vivo , 2008, PLoS pathogens.

[50]  H. Clevers,et al.  Wnt signalling induces maturation of Paneth cells in intestinal crypts , 2005, Nature Cell Biology.

[51]  Cornelia I. Bargmann,et al.  Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans , 2005, Nature.

[52]  Rekha C. Patel,et al.  Homeobox gene HOXA9 inhibits nuclear factor-kappa B dependent activation of endothelium. , 2007, Atherosclerosis.

[53]  J. Ewbank,et al.  Diverse Bacteria Are Pathogens of Caenorhabditis elegans , 2002, Infection and Immunity.

[54]  N. Hacohen,et al.  Evolutionarily conserved recognition and innate immunity to fungal pathogens by the scavenger receptors SCARF1 and CD36 , 2009, The Journal of experimental medicine.

[55]  Erich Bornberg-Bauer,et al.  Specificity of the innate immune system and diversity of C-type lectin domain (CTLD) proteins in the nematode Caenorhabditis elegans. , 2008, Immunobiology.

[56]  O. Zugasti,et al.  Anti-Fungal Innate Immunity in C. elegans Is Enhanced by Evolutionary Diversification of Antimicrobial Peptides , 2008, PLoS pathogens.

[57]  Jun Sun,et al.  Bacterial activation of β-catenin signaling in human epithelia , 2004 .

[58]  T. Owiński [20 years later]. , 1968, Czasopismo stomatologiczne.

[59]  A. Antebi,et al.  Genetics of Aging in Caenorhabditis elegans , 2007, PLoS genetics.

[60]  R. Jennifer,et al.  G蛋白質共役受容体FSHR‐1はCaenorhabditis elegansの自然免疫応答に必要である , 2009 .

[61]  Frederick M. Ausubel,et al.  Molecular Mechanisms of Bacterial Virulence Elucidated Using a Pseudomonas Aeruginosa– Caenorhabditis Elegans Pathogenesis Model , 2022 .

[62]  Marc Vidal,et al.  Systematic analysis of genes required for synapse structure and function , 2005, Nature.

[63]  David J. Miller,et al.  The innate immune repertoire in Cnidaria - ancestral complexity and stochastic gene loss , 2007, Genome Biology.

[64]  Dennis H Kim,et al.  Transcriptional responses to pathogens in Caenorhabditis elegans. , 2008, Current opinion in microbiology.

[65]  H. Clevers,et al.  Wnt / β-catenin signaling regulates the expression of the homeobox gene Cdx 1 in embryonic intestine , 2022 .

[66]  Stephane Aris-Brosou,et al.  Bayesian models of episodic evolution support a late precambrian explosive diversification of the Metazoa. , 2003, Molecular biology and evolution.

[67]  J. Ryu,et al.  Innate Immune Homeostasis by the Homeobox Gene Caudal and Commensal-Gut Mutualism in Drosophila , 2008, Science.

[68]  Koutarou D. Kimura,et al.  Regulation of C. elegans life-span by insulinlike signaling in the nervous system. , 2000, Science.

[69]  H. Hilbi,et al.  Environmental predators as models for bacterial pathogenesis. , 2007, Environmental microbiology.

[70]  Holger Heine,et al.  The Wingless homolog WNT5A and its receptor Frizzled-5 regulate inflammatory responses of human mononuclear cells induced by microbial stimulation. , 2006, Blood.

[71]  M. Karin,et al.  Regulation and function of NF-kappaB transcription factors in the immune system. , 2009, Annual review of immunology.

[72]  F. Ausubel,et al.  The G protein-coupled receptor FSHR-1 is required for the Caenorhabditis elegans innate immune response , 2009, Proceedings of the National Academy of Sciences.

[73]  M. Kurrer,et al.  Wnt5A/CaMKII Signaling Contributes to the Inflammatory Response of Macrophages and Is a Target for the Antiinflammatory Action of Activated Protein C and Interleukin-10 , 2008, Arteriosclerosis, thrombosis, and vascular biology.

[74]  Graziano Pesole,et al.  Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita , 2008, Nature Biotechnology.

[75]  A. Chisholm,et al.  Negative regulation of Caenorhabditis elegans epidermal damage responses by death-associated protein kinase , 2009, Proceedings of the National Academy of Sciences.

[76]  P. Brey,et al.  The Homeobox Gene Caudal Regulates Constitutive Local Expression of Antimicrobial Peptide Genes in Drosophila Epithelia , 2004, Molecular and Cellular Biology.

[77]  F. Ausubel,et al.  Models of Caenorhabditis elegans infection by bacterial and fungal pathogens. , 2008, Methods in molecular biology.

[78]  O. Zugasti,et al.  Neuroimmune regulation of antimicrobial peptide expression by a noncanonical TGF-β signaling pathway in Caenorhabditis elegans epidermis , 2009, Nature Immunology.

[79]  Jonathan Hodgkin,et al.  The C. elegans Hox gene egl-5 is required for correct development of the hermaphrodite hindgut and for the response to rectal infection by Microbacterium nematophilum. , 2009, Developmental biology.

[80]  I. Mellman,et al.  Defective IL‐12 production in mitogen‐activated protein (MAP) kinase kinase 3 (Mkk3)‐deficient mice , 1999, The EMBO journal.

[81]  M. Hung,et al.  Crossregulation of NF‐κB by the APC/GSK‐3β/β‐catenin pathway , 2004, Molecular carcinogenesis.

[82]  Gary Ruvkun,et al.  Long-Lived C. elegans daf-2 Mutants Are Resistant to Bacterial Pathogens , 2003, Science.

[83]  Varsha Singh,et al.  Heat-shock transcription factor (HSF)-1 pathway required for Caenorhabditis elegans immunity , 2006, Proceedings of the National Academy of Sciences.

[84]  R. Medzhitov Approaching the asymptote: 20 years later. , 2009, Immunity.

[85]  Trupti Kawli,et al.  Pseudomonas aeruginosa Suppresses Host Immunity by Activating the DAF-2 Insulin-Like Signaling Pathway in Caenorhabditis elegans , 2008, PLoS pathogens.

[86]  A. Bowie,et al.  The human adaptor SARM negatively regulates adaptor protein TRIF–dependent Toll-like receptor signaling , 2006, Nature Immunology.

[87]  C. Rubin,et al.  Protein kinase D is an essential regulator of C. elegans innate immunity. , 2009, Immunity.

[88]  Michael Boutros,et al.  The art and design of genetic screens: RNA interference , 2008, Nature Reviews Genetics.

[89]  S. K. Kim,et al.  Protruding vulva mutants identify novel loci and Wnt signaling factors that function during Caenorhabditis elegans vulva development. , 2000, Genetics.

[90]  Stuart K. Kim,et al.  The beta-catenin homolog BAR-1 and LET-60 Ras coordinately regulate the Hox gene lin-39 during Caenorhabditis elegans vulval development. , 1998, Development.

[91]  G. Ruvkun,et al.  The taxonomy of developmental control in Caenorhabditis elegans. , 1998, Science.

[92]  Jennifer L. Tenor,et al.  A conserved Toll‐like receptor is required for Caenorhabditis elegans innate immunity , 2008, EMBO reports.

[93]  F. Ausubel,et al.  Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[94]  H. Dressman,et al.  Unfolded protein response genes regulated by CED-1 are required for Caenorhabditis elegans innate immunity. , 2008, Developmental cell.

[95]  M. Salzet,et al.  Vertebrate innate immunity resembles a mosaic of invertebrate immune responses. , 2001, Trends in immunology.

[96]  C. Kurz,et al.  Caenorhabditis elegans for the study of host-pathogen interactions. , 2000, Trends in microbiology.

[97]  H. Ichijo,et al.  Apoptosis signal-regulating kinase 1 in stress and immune response. , 2008, Annual review of pharmacology and toxicology.

[98]  T Takahashi,et al.  ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis , 2001, EMBO reports.

[99]  Brendan W. Wren,et al.  Invertebrates as a source of emerging human pathogens , 2004, Nature Reviews Microbiology.

[100]  M. Driscoll,et al.  A common set of engulfment genes mediates removal of both apoptotic and necrotic cell corpses in C. elegans , 2000, Nature Cell Biology.

[101]  J. Griffitts,et al.  Pore worms: using Caenorhabditis elegans to study how bacterial toxins interact with their target host. , 2004, International journal of medical microbiology : IJMM.

[102]  M. Tan,et al.  The DAF‐2 insulin‐like signaling pathway independently regulates aging and immunity in C. elegans , 2008, Aging cell.

[103]  Chen Dong,et al.  MAP kinases in the immune response. , 2002, Annual review of immunology.

[104]  D. Jewell,et al.  Genetic Variants of Wnt Transcription Factor TCF-4 (TCF7L2) Putative Promoter Region Are Associated with Small Intestinal Crohn's Disease , 2009, PloS one.

[105]  M. Karin The IκB kinase – a bridge between inflammation and cancer , 2008, Cell Research.

[106]  Nicholas H. Putnam,et al.  Sea Anemone Genome Reveals Ancestral Eumetazoan Gene Repertoire and Genomic Organization , 2007, Science.

[107]  D. M. Eisenmann Wnt signaling. , 2005, WormBook : the online review of C. elegans biology.

[108]  Frederick M Ausubel,et al.  The worm has turned--microbial virulence modeled in Caenorhabditis elegans. , 2005, Trends in microbiology.

[109]  J. Corbeil,et al.  Mitogen-activated protein kinase pathways defend against bacterial pore-forming toxins. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[110]  J. Thorner,et al.  Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae. , 2007, Biochimica et biophysica acta.

[111]  M. Belvin,et al.  The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein , 2002, Nature.

[112]  Naoki Hisamoto,et al.  Integration of Caenorhabditis elegans MAPK pathways mediating immunity and stress resistance by MEK-1 MAPK kinase and VHP-1 MAPK phosphatase. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[113]  T. He,et al.  Crosstalk between NF-κB and β-catenin pathways in bacterial-colonized intestinal epithelial cells , 2005 .

[114]  Aggctatccagcgtactccaaaga Cggatggatgaaacccagacacat,et al.  Reduced a-defensin expression is associated with inflammation and not NOD 2 mutation status in ileal Crohn ’ s disease , 2008 .

[115]  Hans Clevers,et al.  Expression pattern of Wnt signaling components in the adult intestine. , 2005, Gastroenterology.

[116]  J. Hoffmann,et al.  The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections , 2007, Nature Reviews Immunology.

[117]  T. Bosch,et al.  The evolution of immunity: a low-life perspective. , 2007, Trends in immunology.

[118]  Richard Mott,et al.  Genomic clusters, putative pathogen recognition molecules, and antimicrobial genes are induced by infection of C. elegans with M. nematophilum. , 2006, Genome research.

[119]  Cori Bargmann,et al.  Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans , 2003, Nature.

[120]  D. Garsin,et al.  Insulin Signaling and the Heat Shock Response Modulate Protein Homeostasis in the Caenorhabditis elegans Intestine during Infection* , 2008, Journal of Biological Chemistry.

[121]  F. Ausubel,et al.  Salmonella typhimurium proliferates and establishes a persistent infection in the intestine of Caenorhabditis elegans , 2000, Current Biology.

[122]  D. Kalman,et al.  Conditioning protects C. elegans from lethal effects of enteropathogenic E. coli by activating genes that regulate lifespan and innate immunity. , 2009, Cell host & microbe.

[123]  T. Kooistra,et al.  Tissue-specific activities of an immune signaling module regulate physiological responses to pathogenic and nutritional bacteria in C. elegans. , 2009, Cell host & microbe.

[124]  F. Ausubel,et al.  The Caenorhabditis elegans MAPK phosphatase VHP‐1 mediates a novel JNK‐like signaling pathway in stress response , 2004, The EMBO journal.