Effects of buoyancy and rotation on the polarity reversal frequency of gravitationally driven numerical dynamos

SUMMARY We present the results of 50 simulations of the geodynamo using a gravitational dynamo model driven by compositional convection in an electrically conducting 3-D fluid shell. By varying the relative strengths of buoyancy and rotation these simulations span a range of dynamo behaviour from strongly dipolar, non-reversing to multipolar and frequently reversing. The polarity reversal frequency is increased with increasing Rayleigh number and Ekman number. Model behaviour also varies in terms of dipolarity, variability of the dipole, and core–mantle boundary field spectra. A transition region is found where the models have dipolar fields and moderate (Earth-like) reversal frequencies of approximately 4 per Myr. Dynamo scaling laws are used to compare model dipole intensities to the geodynamo. If the geodynamo lies in a similar transition region then secular evolution of the buoyancy flux in the outer core due to the growth of the inner core and the decrease in the Earth’s rotation rate due to tidal dissipation can account for some of the secular changes in the reversal frequency and other geomagnetic field properties over the past 100 Myr.

[1]  Catherine Constable,et al.  Is Earth's magnetic field reversing? , 2006 .

[2]  Paul H. Roberts,et al.  Equations governing convection in earth's core and the geodynamo , 1995 .

[3]  Gary A. Glatzmaier,et al.  Geodynamo Simulations—How Realistic Are They? , 2002 .

[4]  P. L. Mcfadden,et al.  Lower mantle convection and geomagnetism , 1984 .

[5]  L. Meynadier,et al.  Geomagnetic dipole strength and reversal rate over the past two million years , 2005, Nature.

[6]  S. Cande,et al.  Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic , 1995 .

[7]  Johannes Wicht,et al.  A detailed study of the polarity reversal mechanism in a numerical dynamo model , 2004 .

[8]  Gary A. Glatzmaier,et al.  Symmetry and stability of the geomagnetic field , 2006 .

[9]  Johannes Wicht Inner-core conductivity in numerical dynamo simulations , 2002 .

[10]  C. Constable Geomagnetic Reversals: Rates, Timescales, Preferred Paths, Statistical Models and Simulations , 2001 .

[11]  V. Zharkov The earth and its rotation : low frequency geodynamics , 1996 .

[12]  Ronald T. Merrill,et al.  Geomagnetic polarity transitions , 1999 .

[13]  L. Meynadier,et al.  Geomagnetic field intensity and reversals during the past four million years , 1993, Nature.

[14]  Yoshimori Honkura,et al.  Scale variability in convection-driven MHD dynamos at low Ekman number , 2008 .

[15]  D. Gubbins The distinction between geomagnetic excursions and reversals , 1999 .

[16]  C. Jones,et al.  On the magnetically stabilizing role of the Earth's inner core , 1995 .

[17]  F. D. Stacey Physics of the earth , 1977 .

[18]  G. Glatzmaier,et al.  8.09 – Magnetic Polarity Reversals in the Core , 2007 .

[19]  Y. Gallet,et al.  A third superchron during the Early Paleozoic , 2005 .

[20]  H. Terasaki,et al.  Effect of pressure on the viscosity of Fe‐S and Fe‐C liquids up to 16 GPa , 2006 .

[21]  C. Jones,et al.  Convection–driven geodynamo models , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[22]  C. Jones,et al.  A convection driven geodynamo reversal model , 1999 .

[23]  Carsten Kutzner,et al.  From stable dipolar towards reversing numerical dynamos , 2002 .

[24]  B. Dubrulle,et al.  Magnetic field reversals in an experimental turbulent dynamo , 2007, physics/0701076.

[25]  P. Tackley,et al.  Effects of thermo-chemical mantle convection on the thermal evolution of the Earth’s core , 2004 .

[26]  U. Christensen,et al.  Dipole moment scaling for convection-driven planetary dynamos , 2005 .

[27]  M. J. Gillan,et al.  Constraints on the composition of the Earth's core from ab initio calculations , 2000, Nature.

[28]  P. Olson Gravitational dynamos and the low-frequency geomagnetic secular variation , 2007, Proceedings of the National Academy of Sciences.

[29]  M. Macouin,et al.  The inner core and the geodynamo , 2003 .

[30]  P. Roberts,et al.  Energy fluxes and ohmic dissipation in the earth's core , 2003 .

[31]  Akira Kageyama,et al.  Formation of current coils in geodynamo simulations , 2008, Nature.

[32]  Jon Rotvig,et al.  An investigation of reversing numerical dynamos driven by either differential or volumetric heating , 2009 .

[33]  C. Jones MS 130: Volume 8-Core Dynamics: Thermal and Compositional Convection in the Outer Core , 2022 .

[34]  Jonathan M. Aurnou,et al.  The magnetic structure of convection-driven numerical dynamos , 2008 .

[35]  P. Olson,et al.  Mantle plumes link magnetic superchrons to phanerozoic mass depletion events , 2007 .

[36]  D. Gubbins,et al.  Symmetry properties of the dynamo equations for palaeomagnetism and geomagnetism , 1993 .

[37]  F. Nimmo Thermal and Compositional Evolution of the Core , 2007 .

[38]  M. Gillan,et al.  Gross thermodynamics of two-component core convection , 2004 .

[39]  F. Busse,et al.  Prandtl-number dependence of convection-driven dynamos in rotating spherical fluid shells , 2005, Journal of Fluid Mechanics.

[40]  J. Besse,et al.  Magnetic Field Reversals, Polar Wander, and Core-Mantle Coupling , 1987, Science.

[42]  D. Fearn Hydromagnetic flow in planetary cores , 1998 .

[43]  Ulrich R. Christensen,et al.  Numerical Dynamo Simulations , 2007 .

[44]  U. Christensen,et al.  effects of driving mechanisms in geodynamo models , 2000 .

[45]  S. Cande,et al.  A new geomagnetic polarity time scale for the Late Cretaceous and Cenozoic , 1992 .

[46]  Matthew R. Walker,et al.  Four centuries of geomagnetic secular variation from historical records , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[47]  Michael W. McElhinny,et al.  The Magnetic Field of the Earth: Paleomagnetism, the Core, and the Deep Mantle , 1997 .

[48]  E. Dormy,et al.  Numerical models of the geodynamo and observational constraints , 2000 .

[49]  G. Hulot,et al.  Do superchrons occur without any palaeomagnetic warning , 2003 .

[50]  Peter Driscoll,et al.  Dipole collapse and reversal precursors in a numerical dynamo , 2009 .

[51]  F. Busse,et al.  Finite amplitude convection and magnetic field generation in a rotating spherical shell , 1988 .

[52]  G. Glatzmaier,et al.  An examination of simulated geomagnetic reversals from a palaeomagnetic perspective , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[53]  Paul H. Roberts,et al.  The role of the Earth's mantle in controlling the frequency of geomagnetic reversals , 1999, Nature.

[54]  Ulrich R. Christensen,et al.  Secular variation in numerical geodynamo models with lateral variations of boundary heat flow , 2003 .

[55]  Yoshimori Honkura,et al.  A numerical study on magnetic polarity transition in an MHD dynamo model , 2007 .

[56]  U. Christensen,et al.  Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields , 2006 .

[57]  Y. Gallet,et al.  Magnetostratigraphy of the Moyero River Section (North-Western Siberia): Constraints On Geomagnetic Reversal Frequency During the Early Palaeozoic , 1996 .

[58]  W. Peltier,et al.  Numerical models of the Earth's thermal history , 2004 .

[59]  G. Sarson,et al.  Are geomagnetic field reversals controlled by turbulence within the Earth's core? , 2007 .

[60]  Jean-Paul Poirier,et al.  The age of the inner core , 2001 .

[61]  Jonathan M. Aurnou,et al.  A numerical study of dynamo action as a function of spherical shell geometry , 2005 .

[62]  Tamaz Chelidze,et al.  Electrical spectroscopy of porous rocks: a review—I. Theoretical models , 1999 .

[63]  P. Olson,et al.  Polarity reversals in geodynamo models with core evolution , 2009 .

[64]  A. Jonkers Long-range dependence in the Cenozoic reversal record , 2003 .

[65]  E. Herrero-Bervera,et al.  Geomagnetic excursions reflect an aborted polarity state , 2008 .

[66]  Kurt Lambeck,et al.  The Earth's Variable Rotation: Geophysical Causes and Consequences , 1980 .

[67]  Johannes Wicht,et al.  Numerical Models of the Geodynamo: From Fundamental Cartesian Models to 3D Simulations of Field Reversals , 2009 .

[68]  Carsten Kutzner,et al.  Simulated geomagnetic reversals and preferred virtual geomagnetic pole paths , 2004 .

[69]  Simulation study of the symmetry-breaking instability and the dipole field reversal in a rotating spherical shell dynamo , 2007 .

[70]  Geoffrey D. Price,et al.  The influence of potassium on core and geodynamo evolution , 2003 .

[71]  Johannes Wicht Palaeomagnetic interpretation of dynamo simulations , 2005 .