Prediction, interpolation and regression for spatially misaligned data

Spatial models for point-referenced data are used for capturing spatial association and for providing spatial prediction, typically in the presence of explanatory variables. The goal of this paper is to treat the situation where there is misalignment between at least one of the explanatory variables and the response variable. In this context we formalize three inference problems. One, which we call interpolation, seeks to infer about missing response at an observed explanatory location. The second, which we call prediction, seeks to infer about a response at a location with the explanatory variable unobserved. The last, which we call regression, seeks to investigate the functional relationship between the response and explanatory variable through the conditional mean of the response. We treat both the case of Gaussian and binary spatial response. We adopt a Bayesian approach, providing full posterior inference for each of the above problems. We illustrate both cases using portions of a study of isopod burrows in the Negev desert in Israel.

[1]  G. Matheron Principles of geostatistics , 1963 .

[2]  D. Myers Matrix formulation of co-kriging , 1982 .

[3]  Andrew R. Solow,et al.  Mapping by simple indicator kriging , 1986 .

[4]  A. G. Fabbri,et al.  Quantitative analysis of mineral and energy resources , 1987 .

[5]  H. Omre Bayesian kriging—Merging observations and qualified guesses in kriging , 1987 .

[6]  Henning Omre A Bayesian Approach to Surface Estimation , 1988 .

[7]  Interpolation and optimal linear prediction , 1989 .

[8]  Henning Omre,et al.  The Bayesian bridge between simple and universal kriging , 1989 .

[9]  Allan D. Woodbury,et al.  Bayesian updating revisited , 1989 .

[10]  A. Stein,et al.  Cokriging nonstationary data , 1991 .

[11]  A. Stein,et al.  Universal kriging and cokriging as a regression procedure. , 1991 .

[12]  D. Myers Pseudo-cross variograms, positive-definiteness, and cokriging , 1991 .

[13]  J. Zidek,et al.  Interpolation with uncertain spatial covariances: a Bayesian alternative to Kriging , 1992 .

[14]  N. Hjort,et al.  Topics in Spatial Statistics , 1992 .

[15]  M. Stein,et al.  A Bayesian analysis of kriging , 1993 .

[16]  P. Abrahamsen Bayesian Kriging for Seismic Depth Conversion of a Multi-Layer Reservoir , 1993 .

[17]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[18]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[19]  J. R. Wallis,et al.  An Approach to Statistical Spatial-Temporal Modeling of Meteorological Fields , 1994 .

[20]  H. Omre,et al.  Topics in spatial statistics. Discussion and comments , 1994 .

[21]  J. Zidek,et al.  Multivariate spatial interpolation and exposure to air pollutants , 1994 .

[22]  D. Myers,et al.  Extension of spatial information, Bayesian kriging and updating of prior variogram parameters , 1995 .

[23]  A. Gelfand,et al.  Bayesian Variogram Modeling for an Isotropic Spatial Process , 1997 .

[24]  J. Zidek,et al.  Bayesian Multivariate Spatial Interpolation with Data Missing by Design , 1997 .

[25]  B. Kedem,et al.  Bayesian Prediction of Transformed Gaussian Random Fields , 1997 .

[26]  P. Diggle,et al.  Model-based geostatistics (with discussion). , 1998 .

[27]  T. C. Haas,et al.  Model-based geostatistics - Discussion , 1998 .

[28]  S. Chib,et al.  Analysis of multivariate probit models , 1998 .

[29]  Roger Woodard,et al.  Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.

[30]  Alan E. Gelfand,et al.  Geostatistical modelling for spatial interaction data with application to postal service performance , 2000 .

[31]  V. D. Oliveira,et al.  Bayesian prediction of clipped Gaussian random fields , 2000 .

[32]  A. Gelfand,et al.  The Dynamics of Location in Home Price , 2004 .