Special deformation mechanisms dominated by grain boundary sliding of extrusion–refined Ti–22Al–25Nb alloy during compression in single BCC phase field

[1]  P. Chekhonin,et al.  Effect of temperature and strain rate on the deformation behavior of Ti5321 during hot-compression , 2021 .

[2]  N. Tsuji,et al.  Unique high-temperature deformation dominated by grain boundary sliding in heterogeneous necklace structure formed by dynamic recrystallization in HfNbTaTiZr BCC refractory high entropy alloy , 2020 .

[3]  N. Tsuji,et al.  Unique Deformation Behavior and Microstructure Evolution in High Temperature Processing of HfNbTaTiZr Refractory High Entropy Alloy , 2018, Acta Materialia.

[4]  B. Tang,et al.  Hot Deformation Behavior, Dynamic Recrystallization, and Texture Evolution of Ti–22Al–25Nb Alloy , 2018 .

[5]  W. Zeng,et al.  Deformation and microstructure evolution above the B2 transus of Ti-22Al-25Nb (at%) orthorhombic alloy , 2018 .

[6]  P. Yang,et al.  The Formation of Strong {100} Texture by Dynamic Strain-Induced Boundary Migration in Hot Compressed Ti-5Al-5Mo-5V-1Cr-1Fe Alloy , 2017 .

[7]  Ke Huang,et al.  A review of dynamic recrystallization phenomena in metallic materials , 2016 .

[8]  J. Weiss,et al.  From mild to wild fluctuations in crystal plasticity. , 2015, Physical review letters.

[9]  James C. Williams,et al.  Perspectives on Titanium Science and Technology , 2013 .

[10]  Chung-Souk Han,et al.  Mechanism-based strain gradient crystal plasticity—I. Theory , 2005 .

[11]  Chong-yu Wang,et al.  Generalized-stacking-fault energy and dislocation properties in bcc Fe: A first-principles study , 2004 .

[12]  B. Majumdar,et al.  Part I. The microstructural evolution in Ti-Al-Nb O+Bcc orthorhombic alloys , 1999 .

[13]  S. Semiatin,et al.  Hot workability of titanium and titanium aluminide alloys—an overview , 1998 .

[14]  S. Semiatin,et al.  Thermomechanical processing of beta titanium alloys—an overview , 1998 .

[15]  E. Nes,et al.  Deformation of cube-oriented grains and formation of recrystallized cube grains in a hot deformed commercial AlMgMn aluminium alloy , 1996 .

[16]  D. Kuhlmann-wilsdorf,et al.  Geometrically necessary, incidental and subgrain boundaries , 1991 .

[17]  C. Sellars,et al.  Changes of flow stress and microstructure during hot deformation of Al–1Mg–1Mn , 1990 .

[18]  T. K. Nandi,et al.  A new ordered orthorhombic phase in a Ti3AlNb alloy , 1988 .

[19]  M. Ashby,et al.  On grain boundary sliding and diffusional creep , 1971 .

[20]  N. Ridley Metals for superplastic forming , 2011 .

[21]  A. Mortensen,et al.  Geometrically necessary dislocations and strain-gradient plasticity: a few critical issues , 2003 .

[22]  D. Bammann,et al.  Geometrically necessary boundaries, incidental dislocation boundaries and geometrically necessary dislocations , 2003 .

[23]  S. Semiatin,et al.  The thermomechanical processing of alpha/beta titanium alloys , 1997 .

[24]  D. Banerjee The intermetallic Ti2AlNb , 1997 .

[25]  H. J. Bunge,et al.  Some applications of the Taylor theory of polycrystal plasticity , 1970 .