A strong electro-optically active lead-free ferroelectric integrated on silicon

The development of silicon photonics could greatly benefit from the linear electro-optical properties, absent in bulk silicon, of ferroelectric oxides, as a novel way to seamlessly connect the electrical and optical domain. Of all oxides, barium titanate exhibits one of the largest linear electro-optical coefficients, which has however not yet been explored for thin films on silicon. Here we report on the electro-optical properties of thin barium titanate films epitaxially grown on silicon substrates. We extract a large effective Pockels coefficient of r(eff) = 148 pm V(-1), which is five times larger than in the current standard material for electro-optical devices, lithium niobate. We also reveal the tensor nature of the electro-optical properties, as necessary for properly designing future devices, and furthermore unambiguously demonstrate the presence of ferroelectricity. The integration of electro-optical active films on silicon could pave the way towards power-efficient, ultra-compact integrated devices, such as modulators, tuning elements and bistable switches.

[1]  G. Saint-Girons,et al.  Epitaxy of BaTiO3 thin film on Si(001) using a SrTiO3 buffer layer for non-volatile memory application , 2011 .

[2]  S Wabnitz,et al.  Second-harmonic generation in silicon waveguides strained by silicon nitride. , 2012, Nature materials.

[3]  M. Shimada,et al.  Electro-optic properties of c-axis oriented LiNbO3 films grown on Si(100) substrate , 2005 .

[4]  B. Wessels,et al.  Dynamic response of polydomain ferroelectric barium titanate epitaxial thin films and its field dependence , 2008 .

[5]  W. Steier,et al.  Hybrid Si-LiNbO₃ microring electro-optically tunable resonators for active photonic devices. , 2011, Optics letters.

[6]  Pietro Bernasconi,et al.  TEMPERATURE DEPENDENCE AND DISPERSION OF ELECTRO-OPTIC AND ELASTO-OPTIC EFFECT IN PEROVSKITE CRYSTALS , 1995 .

[7]  J. Locquet,et al.  Thermal stability of the SrTiO3∕(Ba,Sr)O stacks epitaxially grown on Si , 2006 .

[8]  R. Reano,et al.  Compact electric field sensors based on indirect bonding of lithium niobate to silicon microrings. , 2012, Optics express.

[9]  Su-jin Chung,et al.  Thickness dependence of room temperature permittivity of polycrystalline BaTiO3 thin films by radio-frequency magnetron sputtering , 1997 .

[10]  Alexei Chelnokov,et al.  Electro-optical properties of barium titanate films epitaxially grown on silicon , 2012, OPTO.

[11]  E.L. Wooten,et al.  A review of lithium niobate modulators for fiber-optic communications systems , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[12]  Amnon Yariv,et al.  Optical Waves in Crystals , 1984 .

[13]  D. Reitze,et al.  Electro-optic properties of single crystalline ferroelectric thin films , 1993 .

[14]  C. Ahn,et al.  Crystalline Oxides on Silicon , 2010 .

[15]  C. M. Folkman,et al.  Correction: Corrigendum: Creation of a two-dimensional electron gas at an oxide interface on silicon , 2010, Nature Communications.

[16]  David E. Zelmon,et al.  Molecular beam epitaxy growth of epitaxial barium silicide, barium oxide, and barium titanate on silicon , 1991 .

[17]  Ho Won Jang,et al.  Giant Piezoelectricity on Si for Hyperactive MEMS , 2011, Science.

[18]  V. Gopalan,et al.  c-axis oriented epitaxial BaTiO 3 films on „ 001 ... , 2006 .

[19]  O. Hansen,et al.  Strained silicon as a new electro-optic material , 2006, Nature.

[20]  Michael Nagel,et al.  Pockels effect based fully integrated, strained silicon electro-optic modulator. , 2011, Optics express.

[21]  Daniele Rezzonico,et al.  Electro–optically tunable microring resonators in lithium niobate , 2007, 0705.2392.

[22]  Yalin Lu,et al.  Enhanced dielectric and electro-optic effects in relaxor oxide heterostructured superlattices , 2004 .

[23]  David J. Thomson,et al.  Silicon optical modulators , 2010 .

[24]  D. Schlom A Ferroelectric Oxide Made Directly on Silicon. , 2009 .

[25]  Bruce W Wessels,et al.  Ferroelectric Epitaxial Thin Films for Integrated Optics , 2007 .

[26]  P. Günter,et al.  Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding , 2004 .

[27]  David A. B. Miller,et al.  Device Requirements for Optical Interconnects to Silicon Chips , 2009, Proceedings of the IEEE.

[28]  J. Fastenau,et al.  Commercial molecular beam epitaxy production of high quality SrTiO3 on large diameter Si substrates , 2009 .

[29]  T. Ikeda,et al.  Curie Temperature of BaTiO3 , 1995 .

[30]  Andrew G. Glen,et al.  APPL , 2001 .

[31]  J. Michel,et al.  High-performance Ge-on-Si photodetectors , 2010 .

[32]  T. Conard,et al.  Phase of reflection high-energy electron diffraction oscillations during (Ba,Sr)O epitaxy on Si(100): A marker of Sr barrier integrity , 2005 .

[33]  Jürgen Schubert,et al.  Ferroelectric BaTiO3 thin-film optical waveguide modulators , 2002 .