Numeration Systems on a Regular Language

Abstract. Generalizations of positional number systems in which N is recognizable by finite automata are obtained by describing an arbitrary infinite regular language according to the lexicographic ordering. For these systems of numeration, we show that ultimately periodic sets are recognizable. We also study translation and multiplication by constants as well as the order-dependence of the recognizability.

[1]  Neal Koblitz,et al.  a course in number theory , 1987 .

[2]  Fabien Durand,et al.  A Generalization of Cobham's Theorem , 1998, Theory of Computing Systems.

[3]  Georges Hansel Independent numeration systems , 1998 .

[4]  Gheorghe Paun,et al.  Language-theoretic problems arising from Richelieu cryptosystems , 1993, Theor. Comput. Sci..

[5]  F. Durand,et al.  Sur les ensembles d'entiers reconnaissables , 2008, 0801.0556.

[6]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[7]  Jeffrey Shallit,et al.  Numeration Systems, Linear Recurrences, and Regular Sets , 1994, Inf. Comput..

[8]  C. Michaux,et al.  LOGIC AND p-RECOGNIZABLE SETS OF INTEGERS , 1994 .

[9]  Véronique Bruyère,et al.  Bertrand Numeration Systems and Recognizability , 1997, Theor. Comput. Sci..

[10]  Carl A. Gunter,et al.  In handbook of theoretical computer science , 1990 .

[11]  Anne Bertrand-Mathis,et al.  Comment ecrire les nombres entiers dans une base qui n'est pas entiere , 1989 .

[12]  Dominique Perrin,et al.  Finite Automata , 1958, Philosophy.

[13]  Louis de Forcrand,et al.  Higher Arithmetic , 1898, Nature.

[14]  Boris Solomyak,et al.  Ergodic Theory of ℤ d Actions: On representation of integers in Linear Numeration Systems , 1996 .

[15]  Gheorghe Paun,et al.  Thin and Slender Languages , 1995, Discret. Appl. Math..

[16]  Thomas Sudkamp,et al.  Languages and Machines , 1988 .

[17]  Christos H. Papadimitriou,et al.  Elements of the Theory of Computation , 1997, SIGA.

[18]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[19]  Berndt Farwer,et al.  ω-automata , 2002 .

[20]  M. Hollander,et al.  Greedy Numeration Systems and Regularity , 1998, Theory of Computing Systems.

[21]  Aviezri S. Fraenkel,et al.  Systems of numeration , 1983, IEEE Symposium on Computer Arithmetic.

[22]  Georges Hansel,et al.  Systèmes de numération indépendants et syndéticité , 1998, Theor. Comput. Sci..

[23]  Douglas Quadling,et al.  The Higher Arithmetic , 1954 .

[24]  J. Berstel,et al.  Les séries rationnelles et leurs langages , 1984 .