The Universal Recommender

We describe the Universal Recommender, a recommender system for semantic datasets that generalizes domain-specific recommenders such as content-based, collaborative, social, bibliographic, lexicographic, hybrid and other recommenders. In contrast to existing recommender systems, the Universal Recommender applies to any dataset that allows a semantic representation. We describe the scalable three-stage architecture of the Universal Recommender and its application to Internet Protocol Television (IPTV). To achieve good recommendation accuracy, several novel machine learning and optimization problems are identified. We finally give a brief argument supporting the need for machine learning recommenders.

[1]  Yuji Matsumoto,et al.  Application of kernels to link analysis , 2005, KDD '05.

[2]  Thomas Hofmann,et al.  Probabilistic Latent Semantic Analysis , 1999, UAI.

[3]  Tommi S. Jaakkola,et al.  Weighted Low-Rank Approximations , 2003, ICML.

[4]  Kenneth Y. Goldberg,et al.  Eigentaste: A Constant Time Collaborative Filtering Algorithm , 2001, Information Retrieval.

[5]  Pasquale Lops,et al.  Improving Social Filtering Techniques Through WordNet-Based User Profiles , 2007, User Modeling.

[6]  Christian Bauckhage,et al.  Modeling Collaborative Similarity with the Signed Resistance Distance Kernel , 2008, ECAI.

[7]  Jérôme Kunegis,et al.  Learning spectral graph transformations for link prediction , 2009, ICML '09.

[8]  Fillia Makedon,et al.  Using singular value decomposition approximation for collaborative filtering , 2005, Seventh IEEE International Conference on E-Commerce Technology (CEC'05).

[9]  Tommi S. Jaakkola,et al.  Maximum-Margin Matrix Factorization , 2004, NIPS.

[10]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[11]  David Poole,et al.  Probabilistic Horn Abduction and Bayesian Networks , 1993, Artif. Intell..

[12]  Gediminas Adomavicius,et al.  Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions , 2005, IEEE Transactions on Knowledge and Data Engineering.

[13]  Paul Van Dooren,et al.  The PageTrust Algorithm: How to rank web pages when negative links are allowed? , 2008, SDM.

[14]  Paolo Massa,et al.  Page-reRank: using trusted links to re-rank authority , 2005, The 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI'05).

[15]  Ben Taskar,et al.  Learning Probabilistic Models of Link Structure , 2003, J. Mach. Learn. Res..

[16]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[17]  H. Sebastian Seung,et al.  Algorithms for Non-negative Matrix Factorization , 2000, NIPS.

[18]  Praveen Paritosh,et al.  Freebase: a collaboratively created graph database for structuring human knowledge , 2008, SIGMOD Conference.

[19]  Pavel Yu. Chebotarev,et al.  The Matrix-Forest Theorem and Measuring Relations in Small Social Groups , 2006, ArXiv.

[20]  Nello Cristianini,et al.  Learning Semantic Similarity , 2002, NIPS.

[21]  Yihong Gong,et al.  Combining content and link for classification using matrix factorization , 2007, SIGIR.

[22]  Roelof van Zwol,et al.  Flickr tag recommendation based on collective knowledge , 2008, WWW.

[23]  Christian Bauckhage,et al.  The slashdot zoo: mining a social network with negative edges , 2009, WWW.

[24]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[25]  François Fouss,et al.  Random-Walk Computation of Similarities between Nodes of a Graph with Application to Collaborative Recommendation , 2007, IEEE Transactions on Knowledge and Data Engineering.

[26]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[27]  Paolo Avesani,et al.  Controversial Users Demand Local Trust Metrics: An Experimental Study on Epinions.com Community , 2005, AAAI.

[28]  Ramanathan V. Guha,et al.  Propagation of trust and distrust , 2004, WWW '04.

[29]  Hongyuan Zha,et al.  Co-ranking Authors and Documents in a Heterogeneous Network , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).

[30]  Thomas Hofmann,et al.  Unifying collaborative and content-based filtering , 2004, ICML.

[31]  Bernhard Schölkopf,et al.  A kernel view of the dimensionality reduction of manifolds , 2004, ICML.

[32]  Thomas Gärtner,et al.  A Short Tour of Kernel Methods for Graphs , 2005 .

[33]  Gediminas Adomavicius,et al.  Incorporating contextual information in recommender systems using a multidimensional approach , 2005, TOIS.

[34]  Serge J. Belongie,et al.  Higher order learning with graphs , 2006, ICML.

[35]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[36]  Hector Garcia-Molina,et al.  The Eigentrust algorithm for reputation management in P2P networks , 2003, WWW '03.

[37]  Gene H. Golub,et al.  Matrix computations , 1983 .

[38]  Gerhard Weikum,et al.  WWW 2007 / Track: Semantic Web Session: Ontologies ABSTRACT YAGO: A Core of Semantic Knowledge , 2022 .

[39]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[40]  M. Newman,et al.  Finding community structure in networks using the eigenvectors of matrices. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  Richard A. Harshman,et al.  Information retrieval using a singular value decomposition model of latent semantic structure , 1988, SIGIR '88.

[42]  Robert Wetzker,et al.  A hybrid approach to item recommendation in folksonomies , 2009, ESAIR '09.