Systematic investigations of the hyperfine structure constants of niobium I levels. Part III: High lying even parity levels (37,410–43,420 cm−1) and discovery of a new level

[1]  L. Windholz,et al.  Systematic investigations of the hyperfine structure constants of niobium I levels. Part II: Constants of upper odd parity energy levels between 31,056 and 42,000 cm−1 and discovery of two new levels , 2020 .

[2]  Ł.M. Sobolewski,et al.  Laser spectroscopy used in the investigation of the Zeeman - hyperfine structure of vanadium , 2020 .

[3]  Ł.M. Sobolewski,et al.  LIF spectra of magnetic splitting of lines of atomic vanadium , 2019, Journal of Quantitative Spectroscopy and Radiative Transfer.

[4]  Ł.M. Sobolewski,et al.  Magnetic splitting of La I lines studied by means of fluorescence depletion spectroscopy , 2019, Journal of Quantitative Spectroscopy and Radiative Transfer.

[5]  L. Windholz,et al.  New energy levels of atomic niobium (Nb I) discovered by laser-spectroscopic investigations , 2018, Journal of Quantitative Spectroscopy and Radiative Transfer.

[6]  L. Windholz,et al.  Investigation of the Hyperfine Structure of Atomic Niobium (Nb I) Spectral Lines Based on the Lower Energy Levels at 22936, 23010, and 23048 cm-1 , 2018 .

[7]  L. Windholz Finding of previously unknown energy levels using Fourier-transform and laser spectroscopy , 2016 .

[8]  R. Ferber,et al.  HIGH-RESOLUTION FOURIER TRANSFORM SPECTROSCOPY OF Nb i IN THE NEAR-INFRARED , 2015 .

[9]  F. Güzelçimen,et al.  New energy levels of atomic niobium by laser induced fluorescence spectroscopy in the near infrared , 2015 .

[10]  F. Güzelçimen,et al.  Parametric study of the fine and hyperfine structure for the even parity configurations of atomic niobium , 2015 .

[11]  F. Güzelçimen,et al.  Hyperfine structure investigations of atomic niobium with optogalvanic and laser-induced fluorescence spectroscopy in the near-infrared wavelength range , 2013 .

[12]  R. Ferber,et al.  Hyperfine structure study of atomic niobium with enhanced sensitivity of Fourier transform spectroscopy , 2011 .

[13]  R. Ferber,et al.  Hyperfine structure measurements of neutral niobium with Fourier transform spectroscopy , 2010 .

[14]  G. Başar,et al.  High-resolution laser spectroscopy of the hyperfine structure of high-lying levels of Nb i , 2008 .

[15]  S. Kröger Further experimental investigation of the hyperfine structure in the spectrum of atomic niobium , 2007 .

[16]  S. Kröger,et al.  New and revised energy levels of atomic niobium , 2004 .

[17]  S. Kröger,et al.  Hyperfine structure in the atomic spectrum of niobium , 2003 .

[18]  L. Windholz,et al.  Classification of Spectral Lines by Means of their Hyperfine Structure. Application to Ta I and Ta II Levels , 2003 .

[19]  R. K. Thareja,et al.  Hyperfine-structure studies of 93 Nb by laser optogalvanic spectroscopy , 1992 .

[20]  T. Kajava,et al.  Determination of hyperfine structures and Rydberg convergence limits of selected optical transitions in 93Nb using resonance ionization spectroscopy , 1990 .

[21]  G. N. Rao,et al.  Hyperfine structure studies of 175Lu by laser optogalvanic spectroscopy , 1989 .

[22]  G. N. Rao,et al.  Hyperfine structure studies of niobium using laser Optogalvanic Spectroscopy. , 1989 .

[23]  P. Raghavan,et al.  Table of nuclear moments , 1989 .

[24]  L. Fraenkel,et al.  Hyperfine structure measurements of93Nb , 1988 .

[25]  S. Büttgenbach,et al.  Hyperfine structure of nine levels in two configurations of93Nb , 1975 .

[26]  S. Büttgenbach,et al.  Hyperfine structure of nine levels in two configurations of93Nb , 1975 .

[27]  C. J. Humphreys,et al.  Term analyses of the first two spectra of columbium , 1945 .