Thermal Design of Humidification– Dehumidification Systems for Affordable Small-Scale Desalination

AbstractHumidification-dehumidification (HDH) technology is a carrier-gas-based thermal desalination technique ideal for application in a small-scale system. However, HDH technology currently has a high cost of water production (about $30/m3 of pure water produced). This article describes changes in thermal design that make HDH systems more affordable (< $5/m3), including development of thermal design algorithms for thermodynamic balancing via mass extractions and injections and design of a bubble column dehumidifier for high-heat and mass-transfer rates in the presence of large amounts of noncondensable gas. Definition of a novel nondimensional parameter known as the modified heat capacity rate ratio has enabled designs that minimize the imbalance in local driving temperature and concentration differences. A new understanding of heat transfer in bubble column heat exchangers has led to low pressure drop designs (< 1 kPa). In addition, the concept of multistaging the uniform temperature column in several ...

[1]  L. Fewtrell,et al.  Fluoride in Drinking-Water , 2006 .

[2]  John H. Lienhard,et al.  Bubble columns for condensation at high concentrations of noncondensable gas: Heat‐transfer model and experiments , 2013 .

[3]  John H. Lienhard,et al.  Entropy generation in condensation in the presence of high concentrations of noncondensable gases , 2012 .

[4]  H. A. Hasanein,et al.  Steam condensation in the presence of noncondensable gases under forced convection conditions , 1994 .

[5]  Jyeshtharaj B. Joshi,et al.  A circulation cell model for bubble columns , 1979 .

[6]  D. Molden Water for food, water for life: a comprehensive assessment of water management in agriculture , 2007 .

[7]  A. Hammond,et al.  The Next 4 Billion , 2007, Innovations: Technology, Governance, Globalization.

[8]  V. Murali Krishna,et al.  Convective condensation of vapor in the presence of a non-condensable gas of high concentration in laminar flow in a vertical pipe , 2008 .

[9]  Ephraim M Sparrow,et al.  Effects of superheated vapor and noncondensable gases on laminar film condensation , 1961 .

[10]  A. Hammond,et al.  The Next 4 Billion: Market Size and Business Strategy at the Base of the Pyramid , 2007 .

[11]  V. E. Denny,et al.  Effects of noncondensable gas and forced flow on laminar film condensation , 1972 .

[12]  V. E. Denny,et al.  Laminar Film Condensation From a Steam-Air Mixture Undergoing Forced Flow Down a Vertical Surface , 1971 .

[13]  Ronan K. McGovern,et al.  Performance limits of zero and single extraction humidification-dehumidification desalination systems , 2012 .

[14]  Stuart W. Churchill,et al.  Laminar film condensation , 1986 .

[15]  James R. Beckman,et al.  Brackish and seawater desalination using a 20 ft2 dewvaporation tower , 2001 .

[16]  Bruno Sauvet-Goichon,et al.  Ashkelon desalination plant — A successful challenge , 2007 .

[17]  John H. Lienhard,et al.  The potential of solar-driven humidification–dehumidification desalination for small-scale decentralized water production , 2009 .

[18]  John H. Lienhard,et al.  ENERGY EFFECTIVENESS OF SIMULTANEOUS HEAT AND MASS EXCHANGE DEVICES , 2010 .

[19]  John H. Lienhard,et al.  Entropy generation minimization of combined heat and mass transfer devices , 2010 .

[20]  James R. Beckman,et al.  Seawater desalination using Dewvaporation technique: experimental and enhancement work with economic analysis , 2006 .

[21]  John H. Lienhard,et al.  Thermodynamic analysis of humidification dehumidification desalination cycles , 2009 .

[22]  Chuan-Jing Tu,et al.  Effects of non-condensable gas on laminar film condensation in a vertical tube , 1988 .

[23]  Mujid S. Kazimi,et al.  Forced convection in-tube steam condensation in the presence of noncondensable gases , 1996 .

[24]  C. Prahalad,et al.  Serving the world's poor, profitably. , 2002, Harvard business review.

[25]  Ephraim M Sparrow,et al.  Forced convection condensation in the presence of noncondensables and interfacial resistance , 1967 .

[26]  Unesco-Wwap Water for people, water for life : executive summary , 2003 .

[27]  Contributions from M. Walpole The Millennium Development Goals Report , 2008 .

[28]  Per F. Peterson,et al.  Diffusion layer modeling for condensation in vertical tubes with noncondensable gases , 1993 .

[29]  W. Nusselt Die Oberflachenkondensation des Wasserdampfes , 1916 .

[30]  A. Bejan Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes , 1995 .

[31]  Karan H. Mistry,et al.  Optimal operating conditions and configurations for humidification–dehumidification desalination cycles , 2011 .

[32]  Jyeshtharaj B. Joshi,et al.  Design and selection of sparger for bubble column reactor. Part I: Performance of different spargers , 2011 .

[33]  Ephraim M Sparrow,et al.  Condensation heat transfer in the presence of noncondensables, interfacial resistance, superheating, variable properties, and diffusion , 1966 .

[34]  Herman Merte,et al.  Condensation heat transfer , 1973 .

[35]  Bhabajit Bhuyan A Study on Arsenic and Iron Contamination of Groundwater in Three Development Blocks of Lakhimpur District, Assam, India , 2010 .

[36]  A. Colburn,et al.  Design of Cooler Condensers for Mixtures of Vapors with Noncondensing Gases , 1934 .