Non Linear Dynamics of Ishikawa Iteration
暂无分享,去创建一个
[1] B. Rhoades,et al. Fixed Point Iterations for Certain Nonlinear Mappings , 1994 .
[2] Bodil Branner,et al. The iteration of cubic polynomials Part I: The global topology of parameter space , 1988 .
[3] S. Ishikawa. Fixed points by a new iteration method , 1974 .
[4] Paul W. Carlson. Pseudo-3-D rendering methods for fractals in the complex plane , 1996, Comput. Graph..
[5] Dominic Rochon,et al. A GENERALIZED MANDELBROT SET FOR BICOMPLEX NUMBERS , 2000 .
[6] Richard A. Holmgren. A First Course in Discrete Dynamical Systems , 1994 .
[7] James R. Munkres,et al. Topology; a first course , 1974 .
[8] R. Cerf,et al. Fractals for the classroom. Strategic activities, vol 1, HO Peitgen, H Jürgens, D Saupe, E Maletsky, T Perciante, L Yunker. Springer, New York (1991) , 1992 .
[9] Mamta Rani,et al. Superior Mandelbrot Set , 2004 .
[10] Stefan M. Soltuz,et al. ON THE EQUIVALENCE OF MANN AND ISHIKAWA ITERATION METHODS , 2003 .
[11] G. V. R. Babu,et al. Mann iteration converges faster than Ishikawa iteration for the class of Zamfirescu operators , 2006 .
[12] W. R. Mann,et al. Mean value methods in iteration , 1953 .
[13] B. Mandelbrot. FRACTAL ASPECTS OF THE ITERATION OF z →Λz(1‐ z) FOR COMPLEX Λ AND z , 1980 .
[14] V. Berinde. Iterative Approximation of Fixed Points , 2007 .
[15] Alan F. Beardon,et al. Iteration of Rational Functions: Complex Analytic Dynamical Systems , 1991 .
[16] Alan F. Beardon,et al. Iteration of Rational Functions , 1991 .
[17] R. Devaney. An Introduction to Chaotic Dynamical Systems , 1990 .
[18] M. Bernhard. Introduction to Chaotic Dynamical Systems , 1992 .
[19] M. Yamaguti,et al. Chaos and Fractals , 1987 .