Calibration of elastoplastic constitutive model parameters from full‐field data with automatic differentiation‐based sensitivities

We present a framework for calibration of parameters in elastoplastic constitutive models that is based on the use of automatic differentiation. The model calibration problem is posed as a partial differential equation-constrained optimization problem where a finite element (FE) model of the coupled equilibrium equation and constitutive model evolution equations serves as the constraint. The objective function quantifies the mismatch between the displacement predicted by the FE model and full-field digital image correlation data, and the optimization problem is solved using gradient-based optimization algorithms. Forward and adjoint sensitivities are used to compute the gradient at considerably less cost than its calculation from finite difference approximations. Through the use of automatic differentiation (AD), we need only to write the constraints in terms of AD objects, where all of the derivatives required for the forward and inverse problems are obtained by appropriately seeding and evaluating these quantities. We present three numerical examples that verify the correctness of the gradient, demonstrate the AD approach's parallel computation capabilities via application to a large-scale FE model, and highlight the formulation's ease of extensibility to other classes of constitutive models.

[1]  Charlie C. L. Wang,et al.  Current and future trends in topology optimization for additive manufacturing , 2018 .

[2]  P. Lava,et al.  Anisotropic yield surface identification of sheet metal through stereo finite element model updating , 2016 .

[3]  Stéphane Roux,et al.  Big Data in Experimental Mechanics and Model Order Reduction: Today’s Challenges and Tomorrow’s Opportunities , 2017, Archives of Computational Methods in Engineering.

[4]  S. Kramer,et al.  Anisotropic plasticity model forms for extruded Al 7079: Part I, calibration , 2020 .

[5]  Dylan Jude,et al.  A GPU Accelerated Adjoint Solver for Shape Optimization , 2018, 2018 Fluid Dynamics Conference.

[6]  Nicholas Zabaras,et al.  A proper orthogonal decomposition approach to microstructure model reduction in Rodrigues space with applications to optimal control of microstructure-sensitive properties , 2003 .

[7]  N. Zabaras,et al.  A continuum sensitivity method for the design of multi-stage metal forming processes , 2003 .

[8]  Stéphane Avril,et al.  The Virtual Fields Method for Extracting Constitutive Parameters From Full‐Field Measurements: a Review , 2006 .

[9]  Assad A. Oberai,et al.  Simulation of finite-strain inelastic phenomena governed by creep and plasticity , 2018 .

[10]  Franccois Hild,et al.  Digital Image Correlation: from Displacement Measurement to Identification of Elastic Properties – a Review , 2006 .

[11]  Fabrice Pierron,et al.  Experimental Validation of the Sensitivity-Based Virtual Fields for Identification of Anisotropic Plasticity Models , 2020 .

[12]  M. Martiny,et al.  Identification of sheet metal plastic anisotropy using heterogeneous biaxial tensile tests , 2010 .

[13]  Veera Sundararaghavan,et al.  A multi-length scale sensitivity analysis for the control of texture-dependent properties in deformation processing , 2008 .

[14]  Antoinette M. Maniatty,et al.  Stabilized finite element formulation for elastic–plastic finite deformations , 2005 .

[15]  Daniel A. Tortorelli,et al.  Topology optimization of finite strain viscoplastic systems under transient loads , 2018 .

[16]  Rolf Mahnken,et al.  Theoretical, numerical and identification aspects of a new model class for ductile damage , 2002 .

[17]  Nicholas Zabaras,et al.  A continuum sensitivity method for finite thermo‐inelastic deformations with applications to the design of hot forming processes , 2002 .

[18]  S. Roux,et al.  Comparison of Local and Global Approaches to Digital Image Correlation , 2012 .

[19]  Jacek Rokicki,et al.  Adjoint Lattice Boltzmann for topology optimization on multi-GPU architecture , 2015, Comput. Math. Appl..

[20]  François Hild,et al.  On the calibration of elastoplastic parameters at the microscale via X-ray microtomography and digital volume correlation for the simulation of ductile damage , 2018, European Journal of Mechanics - A/Solids.

[21]  A. Andrade-Campos,et al.  Calibration of anisotropic plasticity models using a biaxial test and the virtual fields method , 2019, International Journal of Solids and Structures.

[22]  Oded Amir,et al.  Stress-constrained continuum topology optimization: a new approach based on elasto-plasticity , 2016, ArXiv.

[23]  John N. Shadid,et al.  Towards efficient backward-in-time adjoint computations using data compression techniques , 2015 .

[24]  Hubert W. Schreier,et al.  Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts,Theory and Applications , 2009 .

[25]  Fabrice Pierron,et al.  Identification of plastic constitutive parameters at large deformations from three dimensional displacement fields , 2011, Computational Mechanics.

[26]  Roger P. Pawlowski,et al.  Automating embedded analysis capabilities and managing software complexity in multiphysics simulation, Part II: Application to partial differential equations , 2012, Sci. Program..

[27]  Kapil Khandelwal,et al.  Failure resistant topology optimization of structures using nonlocal elastoplastic-damage model , 2018 .

[28]  Kapil Khandelwal,et al.  Topology optimization of energy absorbing structures with maximum damage constraint , 2017 .

[29]  Cetin Batur Dilgen,et al.  Topology Optimization of Turbulent Flows , 2018 .

[30]  Nicholas Zabaras,et al.  Deformation process design for control of microstructure in the presence of dynamic recrystallization and grain growth mechanisms , 2004 .

[31]  Stéphane Roux,et al.  Toward 4D mechanical correlation , 2016, Adv. Model. Simul. Eng. Sci..

[32]  Stéphane Roux,et al.  Estimation of Elastoplastic Parameters via Weighted FEMU and Integrated-DIC , 2015 .

[33]  Stéphane Roux,et al.  Reducing Full-Field Identification Cost by Using Quasi-Newton Methods , 2017 .

[34]  Quan Long,et al.  Fast Bayesian Optimal Experimental Design for Seismic Source Inversion , 2015, 1502.07873.

[35]  Amir M. Mirzendehdel,et al.  Strength-Based Topology Optimization for Anisotropic Parts , 2018 .

[36]  Stéphane Roux,et al.  Improving full-field identification using progressive model enrichments , 2017 .

[37]  Rafael Palacios,et al.  Aerodynamic-driven topology optimization of compliant airfoils , 2020, Structural and Multidisciplinary Optimization.

[38]  James W. Foulk,et al.  A 10‐node composite tetrahedral finite element for solid mechanics , 2016 .

[39]  K. Svanberg The method of moving asymptotes—a new method for structural optimization , 1987 .

[40]  J. Korelc,et al.  Closed‐form matrix exponential and its application in finite‐strain plasticity , 2014 .

[41]  P. Clausen,et al.  Efficient adjoint sensitivity analysis of isotropic hardening elastoplasticity via load steps reduction approximation , 2017 .

[42]  S. Hartmann,et al.  Automatic differentiation for stress and consistent tangent computation , 2014, Archive of Applied Mechanics.

[43]  A. Bouterf,et al.  Digital Volume Correlation: Review of Progress and Challenges , 2018, Experimental Mechanics.

[44]  Kapil Khandelwal,et al.  Design of periodic elastoplastic energy dissipating microstructures , 2018, Structural and Multidisciplinary Optimization.

[45]  William C. Sweatt,et al.  Camera System Resolution and its Influence on Digital Image Correlation , 2015 .

[46]  Nicholas Zabaras,et al.  A sensitivity analysis for the optimal design of metal-forming processes , 1996 .

[47]  Lei Li,et al.  A unified framework for nonlinear path‐dependent sensitivity analysis in topology optimization , 2018 .

[48]  D. Owen,et al.  Computational methods for plasticity : theory and applications , 2008 .

[49]  Juan J. Alonso,et al.  Comparison of reduced- and full-space algorithms for PDE-constrained optimization , 2013 .

[50]  Mgd Marc Geers,et al.  Comparison of the identification performance of conventional FEM updating and integrated DIC , 2016 .

[51]  Nicholas Zabaras,et al.  On the synergy between texture classification and deformation process sequence selection for the control of texture-dependent properties , 2005 .

[52]  Kapil Khandelwal,et al.  Design of energy dissipating elastoplastic structures under cyclic loads using topology optimization , 2017 .

[53]  Rolf Mahnken,et al.  A comprehensive study of a multiplicative elastoplasticity model coupled to damage including parameter identification , 2000 .

[54]  Nicholas Zabaras,et al.  Computational design of deformation processes for materials with ductile damage , 2003 .

[55]  Kapil Khandelwal,et al.  Design of fracture resistant energy absorbing structures using elastoplastic topology optimization , 2017 .

[56]  Nicholas Zabaras,et al.  An updated Lagrangian finite element sensitivity analysis of large deformations using quadrilateral elements , 2001 .

[57]  Kapil Khandelwal,et al.  Optimized bi-material layouts for energy dissipating composites under finite deformations , 2020 .

[58]  Rolf Mahnken,et al.  Parameter identification for finite deformation elasto-plasticity in principal directions , 1997 .

[59]  Mathias Wallin,et al.  Topology optimization based on finite strain plasticity , 2016 .

[60]  D. Tortorelli,et al.  Topology optimization for designing periodic microstructures based on finite strain viscoplasticity , 2020, Structural and Multidisciplinary Optimization.

[61]  Nicholas Zabaras,et al.  The continuum sensitivity method for the computational design of three-dimensional deformation processes , 2006 .

[62]  Qiushi Chen,et al.  Automatic Differentiation for Numerically Exact Computation of Tangent Operators in Small‐ and Large‐Deformation Computational Inelasticity , 2014 .

[63]  D. Tortorelli,et al.  Tangent operators and design sensitivity formulations for transient non‐linear coupled problems with applications to elastoplasticity , 1994 .

[64]  O. Sigmund,et al.  Topology optimization approaches , 2013, Structural and Multidisciplinary Optimization.

[65]  Brian K. Bay,et al.  Methods and applications of digital volume correlation , 2008 .

[66]  Yong Liu,et al.  Higher order stabilized finite element method for hyperelastic finite deformation , 2002 .

[67]  N. Zabaras,et al.  Design across length scales: a reduced-order model of polycrystal plasticity for the control of microstructure-sensitive material properties , 2004 .

[68]  Boyan S. Lazarov,et al.  Applications of automatic differentiation in topology optimization , 2017 .

[69]  Mark S. Shephard,et al.  Adjoint-based error estimation and mesh adaptation for stabilized finite deformation elasticity , 2018, Computer Methods in Applied Mechanics and Engineering.

[70]  Stéphane Roux,et al.  On the identifiability of Hill‐1948 plasticity model with a single biaxial test on very thin sheet , 2017 .

[71]  Sharlotte Lorraine Bolyard Kramer,et al.  Implementation and Evaluation of the Virtual Fields Method: Determining Constitutive Model Parameters From Full-Field Deformation Data. , 2014 .

[72]  N. Zabaras,et al.  Design of microstructure-sensitive properties in elasto-viscoplastic polycrystals using multi-scale homogenization , 2006 .

[73]  Fabrice Pierron,et al.  Validation of finite‐element models using full‐field experimental data: Levelling finite‐element analysis data through a digital image correlation engine , 2020, Strain.

[74]  Michel Coret,et al.  Robust identification of elasto-plastic constitutive law parameters from digital images using 3D kinematics , 2013 .

[75]  Tamara G. Kolda,et al.  An overview of the Trilinos project , 2005, TOMS.

[76]  Xiaodong Li,et al.  Effect of Fragile Speckle Patterns on Accuracy of Digital Volume Correlation , 2019, Experimental Mechanics.

[77]  Nicholas Zabaras,et al.  Shape optimization and preform design in metal forming processes , 2000 .

[78]  Kapil Khandelwal,et al.  Topology optimization of structures with anisotropic plastic materials using enhanced assumed strain elements , 2017 .

[79]  Roger P. Pawlowski,et al.  Automating embedded analysis capabilities and managing software complexity in multiphysics simulation, Part I: Template-based generic programming , 2012, Sci. Program..

[80]  Deepak V. Kulkarni,et al.  A Newton-Schur alternative to the consistent tangent approach in computational plasticity , 2007 .

[81]  Roger P. Pawlowski,et al.  Efficient Expression Templates for Operator Overloading-based Automatic Differentiation , 2012, ArXiv.

[82]  Thomas J. R. Hughes,et al.  A phase-field formulation for fracture in ductile materials: Finite deformation balance law derivation, plastic degradation, and stress triaxiality effects , 2016 .

[83]  Jorge Nocedal,et al.  Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization , 1997, TOMS.

[84]  Michel Grédiac,et al.  The Virtual Fields Method: Extracting Constitutive Mechanical Parameters from Full-field Deformation Measurements , 2012 .

[85]  Dimitri Debruyne,et al.  Parameter identification for anisotropic plasticity model using digital image correlation , 2009 .

[86]  M. Bonnet,et al.  Overview of Identification Methods of Mechanical Parameters Based on Full-field Measurements , 2008 .

[87]  Fabrice Pierron,et al.  Application of the virtual fields method to large strain anisotropic plasticity , 2016 .

[88]  Felipe Fernandez,et al.  Semi-analytical sensitivity analysis for nonlinear transient problems , 2018, Structural and Multidisciplinary Optimization.

[89]  Rolf Mahnken,et al.  Aspects on the finite-element implementation of the Gurson model including parameter identification , 1999 .

[90]  P.L. Reu,et al.  Parameter covariance and non-uniqueness in material model calibration using the Virtual Fields Method , 2018, Computational Materials Science.

[91]  Phillip L. Reu,et al.  Investigation of assumptions and approximations in the virtual fields method for a viscoplastic material model , 2019, Strain.

[92]  D. Tortorelli,et al.  Topology optimization for effective energy propagation in rate-independent elastoplastic material systems , 2015 .

[93]  Kapil Khandelwal,et al.  Topology optimization of pressure dependent elastoplastic energy absorbing structures with material damage constraints , 2017 .

[94]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[95]  S. Roux,et al.  Simultaneous full-field multi-experiment identification , 2019, Mechanics of Materials.

[96]  Nicholas Zabaras,et al.  A Continuum Lagrangian Sensitivity Analysis for Metal Forming Processes with Applications to Die Design Problems , 2000 .

[97]  Kapil Khandelwal,et al.  Bi-material topology optimization for energy dissipation with inertia and material rate effects under finite deformations , 2019, Finite Elements in Analysis and Design.

[98]  B. Bay,et al.  Digital volume correlation: Three-dimensional strain mapping using X-ray tomography , 1999 .

[99]  S. Reese,et al.  Anisotropic finite elastoplasticity with nonlinear kinematic and isotropic hardening and application to sheet metal forming , 2010 .

[100]  Jože Korelc,et al.  Automation of primal and sensitivity analysis of transient coupled problems , 2009 .

[101]  Djordje Peric,et al.  On a class of constitutive equations in viscoplasticity : formulation and computational issues , 1993 .

[102]  R. Hill A theory of the yielding and plastic flow of anisotropic metals , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[103]  Stéphane Roux,et al.  Integrated digital image correlation applied to elastoplastic identification in a biaxial experiment , 2016 .

[104]  Cetin Batur Dilgen,et al.  Density based topology optimization of turbulent flow heat transfer systems , 2018 .

[105]  Andreas Griewank,et al.  Evaluating derivatives - principles and techniques of algorithmic differentiation, Second Edition , 2000, Frontiers in applied mathematics.

[106]  M. Shephard,et al.  A stabilized mixed finite element method for finite elasticity.: Formulation for linear displacement and pressure interpolation , 1999 .