Absolute Stability of Wavetrains Can Explain Spatiotemporal Dynamics in Reaction-Diffusion Systems of Lambda-Omega Type

A chemical mechanical polishing apparatus includes a rotating plate on which a substrate is received, and a polishing pad which moves across the substrate as it rotates on the plate to polish the substrate. The load of the pad against the substrate, and the rotary speed of the plate, may be varied to control the rate of material removed by the pad.

[1]  Jonathan A. Sherratt,et al.  Oscillations and chaos behind predator–prey invasion: mathematical artifact or ecological reality? , 1997 .

[2]  L. Brevdo Convectively Unstable Wave Packets in the Blasius Boundary Layer , 1995 .

[3]  W. Saarloos Front propagation into unstable states , 2003, cond-mat/0308540.

[4]  N. Marcuvitz,et al.  Electron-stream interaction with plasmas , 1965 .

[5]  M A Lewis,et al.  Ecological chaos in the wake of invasion. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[6]  T. Bridges,et al.  Absolute and convective instabilities of temporally oscillating flows , 1997 .

[7]  Marcus R. Garvie,et al.  Numerische Mathematik Finite element approximation of spatially extended predator – prey interactions with the Holling type II functional response , 2007 .

[8]  Sergey A. Suslov,et al.  Numerical aspects of searching convective/absolute instability transition , 2006, J. Comput. Phys..

[9]  Sergei Petrovskii,et al.  Dynamical stabilization of an unstable equilibrium in chemical and biological systems , 2002 .

[10]  Marcus R. Garvie Finite-Difference Schemes for Reaction–Diffusion Equations Modeling Predator–Prey Interactions in MATLAB , 2007, Bulletin of mathematical biology.

[11]  Paul Wheeler,et al.  Computation of Spiral Spectra , 2005, SIAM J. Appl. Dyn. Syst..

[12]  S. Suslov Searching convective/absolute instability boundary for flows with fully numerical dispersion relation , 2001 .

[13]  Nancy Kopell,et al.  Plane Wave Solutions to Reaction‐Diffusion Equations , 1973 .

[14]  J. Sherratt,et al.  Locating the transition from periodic oscillations to spatiotemporal chaos in the wake of invasion , 2009, Proceedings of the National Academy of Sciences.

[15]  Scheel,et al.  Absolute versus convective instability of spiral waves , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  Björn Sandstede,et al.  Absolute and Convective Instabilities of Waves on Unbounded and Large Bounded Domains , 2022 .

[17]  J. Sherratt,et al.  Periodic travelling waves in cyclic populations: field studies and reaction–diffusion models , 2008, Journal of The Royal Society Interface.

[18]  S. Suslov Convective and absolute instabilities in non-Boussinesq mixed convection , 2007 .

[19]  Irving R Epstein,et al.  Localized patterns in reaction-diffusion systems. , 2007, Chaos.

[20]  S. Petrovskii,et al.  Spatiotemporal patterns in ecology and epidemiology : theory, models, and simulation , 2007 .

[21]  A reaction-diffusion system of $\lambda$–$\omega$ type Part II: Numerical analysis , 2005, European Journal of Applied Mathematics.

[22]  Jonathan A. Sherratt On the Evolution of Periodic Plane Waves in Reaction-Diffusion Systems of Lambda-Omega Type , 1994, SIAM J. Appl. Math..

[23]  H. Engel,et al.  From trigger to phase waves and back again , 2006 .

[24]  Björn Sandstede,et al.  Gluing unstable fronts and backs together can produce stable pulses , 2000 .

[25]  P. Monkewitz,et al.  LOCAL AND GLOBAL INSTABILITIES IN SPATIALLY DEVELOPING FLOWS , 1990 .

[26]  P. C. Hohenberg,et al.  Fronts, pulses, sources and sinks in generalized complex Ginzberg-Landau equations , 1992 .

[27]  Thomas J. Bridges,et al.  Absolute and convective instabilities of spatially periodic flows , 1996, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[28]  L. Brevdo A study of absolute and convective instabilities with an application to the Eady model , 1988 .

[29]  T. Bridges,et al.  Linear pulse structure and signalling in a film flow on an inclined plane , 1999, Journal of Fluid Mechanics.

[30]  K. Nozaki,et al.  Formations of spatial patterns and holes in the generalized Ginzburg-Landau equation , 1985 .

[31]  Sergei Petrovskii,et al.  Critical phenomena in plankton communities: KISS model revisited , 2000 .

[32]  Willy Govaerts,et al.  Numerical Continuation of Branch Points of Equilibria and Periodic orbits , 2005, Int. J. Bifurc. Chaos.

[33]  M. Cross,et al.  Pattern formation outside of equilibrium , 1993 .

[34]  S. Paolucci,et al.  Stability of non-Boussinesq convection via the complex Ginzburg–Landau model , 2004 .

[35]  Nicola J Armstrong,et al.  The effects of obstacle size on periodic travelling waves in oscillatory reaction–diffusion equations , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[36]  Björn Sandstede,et al.  Defects in Oscillatory Media: Toward a Classification , 2004, SIAM J. Appl. Dyn. Syst..

[37]  Kazuhiro Nozaki,et al.  Exact Solutions of the Generalized Ginzburg-Landau Equation , 1984 .

[38]  Björn Sandstede,et al.  Computing absolute and essential spectra using continuation , 2007 .

[39]  Martin van Hecke Coherent and Incoherent structures in systems described by the 1D CGLE: Experiments and Identification , 2001 .

[40]  I. Aranson,et al.  The world of the complex Ginzburg-Landau equation , 2001, cond-mat/0106115.

[41]  A. Siamj. PERIODIC TRAVELLING WAVE SELECTION BY DIRICHLET BOUNDARY CONDITIONS IN OSCILLATORY REACTION-DIFFUSION SYSTEMS∗ , 2003 .

[42]  N. Shigesada,et al.  Diffusive waves, dynamical stabilization and spatio-temporal chaos in a community of three competitive species , 2001 .

[43]  Bifurcation analysis of reaction-diffusion equations—III. Chemical oscillations , 1976 .

[44]  J. Chomaz,et al.  GLOBAL INSTABILITIES IN SPATIALLY DEVELOPING FLOWS: Non-Normality and Nonlinearity , 2005 .

[45]  A reaction-diffusion system of $\lambda$–$\omega$ type Part I: Mathematical analysis , 2005, European Journal of Applied Mathematics.

[46]  Jens D. M. Rademacher,et al.  Geometric Relations of Absolute and Essential Spectra of Wave Trains , 2006, SIAM J. Appl. Dyn. Syst..

[47]  Shunsaku Nii,et al.  The accumulation of eigenvalues in a stability problem , 2000 .

[48]  J. Sherratt The amplitude of periodic plane waves depends on initial conditions in a variety of lambda - omega systems , 1993 .

[49]  O. Bjørnstad,et al.  Spatial population dynamics: analyzing patterns and processes of population synchrony. , 1999, Trends in ecology & evolution.

[50]  B. Sandstede,et al.  Chapter 18 - Stability of Travelling Waves , 2002 .

[51]  G. Bard Ermentrout,et al.  Transition fronts and localized structures in bistable reaction-diffusion equations , 1997 .

[52]  Weber,et al.  Stability limits of spirals and traveling waves in nonequilibrium media. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[53]  E. J. Doedel,et al.  AUTO: a program for the automatic bifurcation analysis of autonomous systems , 1980 .

[54]  Stability of neuronal pulses composed of concatenated unstable kinks. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[55]  Grégoire Nicolis,et al.  Bifurcation analysis of reaction-diffusion equations—III. Chemical oscillations , 1976 .