ON ESTRADA INDEX

Let G be a graph with n vertices and let ‚1;‚2;:::;‚n be its eigenvalues. The Estrada index of G is EE(G) = n P i=1 e ‚i . We present some lower and upper bounds for EE(G) in terms of graph invariants such as the number of vertices, the number of edges, the spectral moments, the flrst Zagreb index, the nullity and the largest eigenvalue.

[1]  Zhou Bo On the spectral radius of nonnegative matrices. , 2000 .

[2]  J. A. Rodríguez-Velázquez,et al.  Atomic branching in molecules , 2006 .

[3]  Juan A. Rodríguez-Velázquez,et al.  On a graph-spectrum-based structure descriptor , 2007 .

[4]  A LOWER BOUND FOR THE ESTRADA INDEX OF BIPARTITE MOLECULAR GRAPHS , 2007 .

[5]  I. Gutman,et al.  Alkanes with Greatest Estrada Index , 2007 .

[6]  Ivan Gutman,et al.  LOWER BOUNDS FOR ESTRADA INDEX , 2008 .

[7]  Bo Zhou On the spectral radius of nonnegative matrices , 2000, Australas. J Comb..

[8]  Ernesto Estrada Characterization of the amino acid contribution to the folding degree of proteins , 2004, Proteins.

[9]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[10]  I. Gutman,et al.  Mathematical Concepts in Organic Chemistry , 1986 .

[11]  Ernesto Estrada,et al.  Characterization of the folding degree of proteins , 2002, Bioinform..

[12]  J. A. Rodríguez-Velázquez,et al.  Subgraph centrality in complex networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  D. Cvetkovic,et al.  Spectra of graphs : theory and application , 1995 .

[14]  M. Randic,et al.  On Characterization of 3D Molecular Structure , 2002 .

[15]  J. A. Rodríguez-Velázquez,et al.  Spectral measures of bipartivity in complex networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Roberto Todeschini,et al.  Handbook of Molecular Descriptors , 2002 .

[17]  Ante Graovac,et al.  Monte Carlo approach to Estrada index , 2007 .

[18]  J. A. Peña,et al.  Estimating the Estrada index , 2007 .