Partial observer normal form for nonlinear system

In this paper, we investigate the estimation problem for a class of partially observable nonlinear systems. For the proposed Partial Observer Normal Form (PONF), necessary and sufficient conditions are deduced to guarantee the existence of a change of coordinates which can transform the studied system into the proposed PONF. Examples are provided to illustrate the effectiveness of the proposed results.

[1]  A. Krener,et al.  Nonlinear observers with linearizable error dynamics , 1985 .

[2]  Henk Nijmeijer,et al.  Time scaling for observer design with linearizable error dynamics , 2004, Autom..

[3]  H. Hammouri,et al.  Observer Error Linearization Multi-Output Depending , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[4]  Driss Boutat,et al.  Multi-output dependent observability normal form , 2009 .

[5]  X. Xia,et al.  Nonlinear observer design by observer error linearization , 1989 .

[6]  Driss Boutat,et al.  Synchronisation of chaotic systems via reduced observers , 2011 .

[7]  Driss Boutat,et al.  New algorithm for observer error linearization with a diffeomorphism on the outputs , 2009, Autom..

[8]  D. Boutat,et al.  Output Dependent Observability Linear Normal Form , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[9]  Juhoon Back,et al.  Dynamic Observer Error Linearization , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[10]  Martin Guay,et al.  Observer linearization by output-dependent time-scale transformations , 2002, IEEE Trans. Autom. Control..

[11]  Philippe Jouan Immersion of Nonlinear Systems into Linear Systems Modulo Output Injection , 2003, SIAM J. Control. Optim..

[12]  Tyrone Fernando,et al.  Partial-State Observers for Nonlinear Systems , 2006, IEEE Transactions on Automatic Control.

[13]  Driss Boutat,et al.  Extended nonlinear observer normal forms for a class of nonlinear dynamical systems , 2015 .

[14]  A. Phelps On constructing nonlinear observers , 1991 .

[15]  Driss Boutat,et al.  Parameters and states estimation for Dengue epidemic model , 2014, 2014 European Control Conference (ECC).

[16]  Driss Boutat,et al.  Extended output depending normal form , 2013, Autom..

[17]  Jin H. Seo,et al.  Nonlinear observer design by dynamic observer error linearization , 2004, IEEE Transactions on Automatic Control.

[18]  Gildas Besancon Parameter/fault estimation in nonlinear systems and adaptive observers , 2007 .

[19]  Arthur J. Krener,et al.  Linearization by output injection and nonlinear observers , 1983 .

[20]  D. Bestle,et al.  Canonical form observer design for non-linear time-variable systems , 1983 .

[21]  Alan F. Lynch,et al.  Nonlinear observers with approximately linear error dynamics: the multivariable case , 2001, IEEE Trans. Autom. Control..

[22]  Driss Boutat,et al.  Nonlinear observer for the PM synchronous motor , 2014, 2014 American Control Conference.

[23]  Jin H. Seo,et al.  Observer design for non-linear systems that are not uniformly observable , 2002 .

[24]  H. Keller Non-linear observer design by transformation into a generalized observer canonical form , 1987 .

[25]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[26]  Riccardo Marino,et al.  Nonlinear control design: geometric, adaptive and robust , 1995 .

[27]  Klaus Röbenack,et al.  OBSERVER DESIGN USING A PARTIAL NONLINEAR OBSERVER CANONICAL FORM , 2006 .

[28]  Driss Boutat,et al.  Single Output-Dependent Observability Normal Form , 2007, SIAM J. Control. Optim..

[29]  José Garrido,et al.  Actuarial Applications of Epidemiological Models , 2011 .

[30]  A. Isidori Nonlinear Control Systems , 1985 .

[31]  Driss Boutat,et al.  On the transformation of nonlinear dynamical systems into the extended nonlinear observable canonical form , 2011, Int. J. Control.

[32]  Wei Kang,et al.  On the Observability of Nonlinear and Switched Systems , 2009 .