Diboron-porphyrin monolayer: a cathode material for aluminum-ion batteries

[1]  Suvetha Poyyamani Sunddararaj,et al.  Lithium-Ion Batteries—The Crux of Electric Vehicles with Opportunities and Challenges , 2022, Clean Technologies.

[2]  D. Galvão,et al.  2D Porphyrazine: A New Nanoporous Material , 2022, 2208.11101.

[3]  R. Gouws,et al.  A Comparative Review of Lead-Acid, Lithium-Ion and Ultra-Capacitor Technologies and Their Degradation Mechanisms , 2022, Energies.

[4]  R. Majidi Mechanical properties of diboron-porphyrin sheet under strain: A density functional theory study , 2022, Journal of the Indian Chemical Society.

[5]  D. Searles,et al.  Carbon nitrides as cathode materials for aluminium ion Batteries , 2021 .

[6]  S. Ramaprabhu,et al.  Graphdiyne—A Two-Dimensional Cathode for Aluminum Dual-Ion Batteries with High Specific Capacity and Diffusivity , 2021, ACS Applied Energy Materials.

[7]  A. Holland,et al.  An overview and prospective on Al and Al-ion battery technologies , 2021, Journal of Power Sources.

[8]  Sandeep K. Das,et al.  Polycyclic Aromatic Hydrocarbons as Prospective Cathodes for Aluminum Organic Batteries , 2020, The Journal of Physical Chemistry C.

[9]  Zheng Liang,et al.  A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards , 2020, Journal of Energy Chemistry.

[10]  A. A. Solomon,et al.  Assessment of lithium criticality in the global energy transition and addressing policy gaps in transportation , 2020, Nature Communications.

[11]  D. Searles,et al.  Graphdiyne and Hydrogen-Substituted Graphdiyne as Potential Cathode Materials for High-Capacity Aluminum-Ion Batteries , 2020 .

[12]  F. V. Conte,et al.  A Review on Temperature-Dependent Electrochemical Properties, Aging, and Performance of Lithium-Ion Cells , 2020, Batteries.

[13]  Yan Yue,et al.  Semiconductive Porphyrin-Based Covalent Organic Frameworks for Sensitive Near-Infrared Detection. , 2020, ACS applied materials & interfaces.

[14]  L. Machado,et al.  Thiophene-Tetrathia-Annulene monolayer (TTA-2D): A new 2D semiconductor material with indirect bandgap , 2020, Physica E: Low-dimensional Systems and Nanostructures.

[15]  Y. Zhan,et al.  Recent Development of Mg Ion Solid Electrolyte , 2020, Frontiers in Chemistry.

[16]  L. Pereira,et al.  Diboron-porphyrin monolayer: A new 2D semiconductor , 2020, Computational Materials Science.

[17]  S. Das Graphene: A Cathode Material of Choice for Aluminum-Ion Batteries. , 2018, Angewandte Chemie.

[18]  Y. Duh,et al.  Experimental investigation and visualization on thermal runaway of hard prismatic lithium-ion batteries used in smart phones , 2018, Journal of Thermal Analysis and Calorimetry.

[19]  William R. Dichtel,et al.  Local Electronic Structure of a Single-Layer Porphyrin-Containing Covalent Organic Framework. , 2017, ACS nano.

[20]  B. Pathak,et al.  Cover Picture: A Computational Study of a Single‐Walled Carbon‐Nanotube‐Based Ultrafast High‐Capacity Aluminum Battery (Chem. Asian J. 15/2017) , 2017 .

[21]  Thomas J. Macdonald,et al.  Trends in Aluminium‐Based Intercalation Batteries , 2017 .

[22]  Shengbai Zhang,et al.  The Role of Ionic Liquid Electrolyte in an Aluminum–Graphite Electrochemical Cell , 2017 .

[23]  Stefano Passerini,et al.  An Overview and Future Perspectives of Aluminum Batteries , 2016, Advanced materials.

[24]  S. Jung,et al.  Flexible Few-Layered Graphene for the Ultrafast Rechargeable Aluminum-Ion Battery , 2016 .

[25]  Bing-Joe Hwang,et al.  An ultrafast rechargeable aluminium-ion battery , 2015, Nature.

[26]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[27]  N. Hudak Chloroaluminate-Doped Conducting Polymers as Positive Electrodes in Rechargeable Aluminum Batteries , 2014 .

[28]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[29]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[30]  Mathieu Abel,et al.  Single layer of polymeric Fe-phthalocyanine: an organometallic sheet on metal and thin insulating film. , 2011, Journal of the American Chemical Society.

[31]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[32]  E. Levi,et al.  Prototype systems for rechargeable magnesium batteries , 2000, Nature.

[33]  Axel D. Becke,et al.  Numerical solution of Schrödinger’s equation in polyatomic molecules , 1990 .

[34]  P. Gifford,et al.  An Aluminum/Chlorine Rechargeable Cell Employing a Room Temperature Molten Salt Electrolyte , 1988 .

[35]  D. Searles,et al.  Nitrogen-Doped Graphdiyne as a Cathode Material for Aluminium Ion Batteries , 2022, Social Science Research Network.