Interactive Correlation Environment (ICE) - A Statistical Web Tool for Data Collinearity Analysis
暂无分享,去创建一个
Igor Ogashawara | Marcelo Pedroso Curtarelli | José L. Stech | Enner H. Alcântara | Pétala B. Augusto-Silva | Arley F. Souza | M. Curtarelli | E. Alcântara | I. Ogashawara | J. Stech | A. Souza
[1] Deepak R. Mishra,et al. A Novel Algorithm for Predicting Phycocyanin Concentrations in Cyanobacteria: A Proximal Hyperspectral Remote Sensing Approach , 2009, Remote. Sens..
[2] A. Gitelson,et al. A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation , 2008 .
[3] C. Lorenzen,et al. DETERMINATION OF CHLOROPHYLL AND PHEO‐PIGMENTS: SPECTROPHOTOMETRIC EQUATIONS1 , 1967 .
[4] Kazuo Oki,et al. Why is the Ratio of Reflectivity Effective for Chlorophyll Estimation in the Lake Water? , 2010, Remote. Sens..
[5] Daniel J. Power,et al. Decision Support Systems: Concepts and Resources for Managers , 2002 .
[6] R. Vincent,et al. Phycocyanin detection from LANDSAT TM data for mapping cyanobacterial blooms in Lake Erie , 2004 .
[7] Lin Li,et al. Remote estimation of chlorophyll-a in turbid inland waters: Three-band model versus GA-PLS model , 2013 .
[8] Clement Atzberger,et al. Comparative analysis of three chemometric techniques for the spectroradiometric assessment of canopy chlorophyll content in winter wheat , 2010 .
[9] P. M. Hansena,et al. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression , 2003 .
[10] Bin Zhao,et al. Using hyperspectral vegetation indices as a proxy to monitor soil salinity , 2010 .
[11] Katsuaki Koike,et al. Improved Accuracy of Chlorophyll-a Concentration Estimates from MODIS Imagery Using a Two-Band Ratio Algorithm and Geostatistics: As Applied to the Monitoring of Eutrophication Processes over Tien Yen Bay (Northern Vietnam) , 2013, Remote. Sens..
[12] Bob O'Keefe,et al. Viewing the Web as a marketplace: the case of small companies , 1997, Decis. Support Syst..
[13] Kuntal Sengupta,et al. Correlogram-Based Method for Comparing Biological Sequences , 2006, IEA/AIE.
[14] Stefan G. H. Simis,et al. Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water , 2005 .
[15] Kaishan Song,et al. Remote detection of cyanobacteria through phycocyanin for water supply source using three-band model , 2013, Ecol. Informatics.
[16] Aloysio da S. Ferrão-Filho,et al. Florações de cianobactérias tóxicas no reservatório do funil: dinâmica sazonal e consequências para o zooplâncton , 2009 .
[17] Igor Ogashawara,et al. A Performance Review of Reflectance Based Algorithms for Predicting Phycocyanin Concentrations in Inland Waters , 2013, Remote. Sens..
[18] Afranio Reis Rodrigues Primo. Avaliação da influência do reservatório do funil na qualidade da água do rio Paraíba do Sul , 2007 .
[19] F. Meer,et al. Quantitative analysis of salt-affected soil reflectance spectra: A comparison of two adaptive methods (PLSR and ANN) , 2007 .
[20] Ramesh Sharda,et al. Movie forecast Guru: A Web-based DSS for Hollywood managers , 2007, Decis. Support Syst..
[21] Anatoly A. Gitelson,et al. Estimation of chlorophyll-a concentration in case II waters using MODIS and MERIS data—successes and challenges , 2009 .
[22] Mark A. Melton,et al. Methods for measuring the effect of environmental factors on channel properties , 1962 .
[23] G. Yohe,et al. Risk aversion, time preference, and the social cost of carbon , 2009 .
[24] C. Branco,et al. Limnological features of Funil Reservoir (R.J., Brazil) and indicator properties of rotifers and cladocerans of the zooplankton community , 2002 .