A distributed spatio-temporal EEG/MEG inverse solver

We propose a novel l(1)l(2)-norm inverse solver for estimating the sources of EEG/MEG signals. Based on the standard l(1)-norm inverse solvers, this sparse distributed inverse solver integrates the l(1)-norm spatial model with a temporal model of the source signals in order to avoid unstable activation patterns and "spiky" reconstructed signals often produced by the currently used sparse solvers. The joint spatio-temporal model leads to a cost function with an l(1)l(2)-norm regularizer whose minimization can be reduced to a convex second-order cone programming (SOCP) problem and efficiently solved using the interior-point method. The efficient computation of the SOCP problem allows us to implement permutation tests for estimating statistical significance of the inverse solution. Validation with simulated and human MEG data shows that the proposed solver yields source time course estimates qualitatively similar to those obtained through dipole fitting, but without the need to specify the number of dipole sources in advance. Furthermore, the l(1)l(2)-norm solver achieves fewer false positives and a better representation of the source locations than the conventional l(2) minimum-norm estimates.

[1]  C C Wood,et al.  Human cortical potentials evoked by stimulation of the median nerve. II. Cytoarchitectonic areas generating long-latency activity. , 1989, Journal of neurophysiology.

[2]  Thomas E. Nichols,et al.  Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate , 2002, NeuroImage.

[3]  K. Matsuura,et al.  Multiple Current-Dipole Distribution Reconstructed by Modified Selective Minimum-Norm Method , 2000 .

[4]  C. C. Wood APPLICATION OF DIPOLE LOCALIZATION METHODS TO SOURCE IDENTIFICATION OF HUMAN EVOKED POTENTIALS * , 1980, Annals of the New York Academy of Sciences.

[5]  P. G. Larsson,et al.  The value of multichannel MEG and EEG in the presurgical evaluation of 70 epilepsy patients , 2006, Epilepsy Research.

[6]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[7]  E. Somersalo,et al.  Visualization of Magnetoencephalographic Data Using Minimum Current Estimates , 1999, NeuroImage.

[8]  Dmitry M. Malioutov,et al.  A sparse signal reconstruction perspective for source localization with sensor arrays , 2005, IEEE Transactions on Signal Processing.

[9]  R. Salmelin,et al.  Global optimization in the localization of neuromagnetic sources , 1998, IEEE Transactions on Biomedical Engineering.

[10]  Sylvain Baillet,et al.  A Bayesian approach to introducing anatomo-functional priors in the EEG/MEG inverse problem , 1997, IEEE Transactions on Biomedical Engineering.

[11]  Nelson J. Trujillo-Barreto,et al.  Bayesian M/EEG source reconstruction with spatio-temporal priors , 2008, NeuroImage.

[12]  Bhaskar D. Rao,et al.  An affine scaling methodology for best basis selection , 1999, IEEE Trans. Signal Process..

[13]  A K Liu,et al.  Spatiotemporal imaging of human brain activity using functional MRI constrained magnetoencephalography data: Monte Carlo simulations. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[14]  A. Turman,et al.  PARALLEL ORGANIZATION OF SOMATOSENSORY CORTICAL AREAS I AND II FOR TACTILE PROCESSING , 1996, Clinical and experimental pharmacology & physiology.

[15]  M. Hämäläinen,et al.  Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data , 1989, IEEE Transactions on Biomedical Engineering.

[16]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[17]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[18]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[19]  Amir B. Geva,et al.  Bioelectric Sources Estimation Using Spatio-Temporal Matching Pursuit , 1998 .

[20]  Lei Ding,et al.  Sparse source imaging in electroencephalography with accurate field modeling , 2008, Human brain mapping.

[21]  Jouko Lampinen,et al.  Bayesian analysis of the neuromagnetic inverse problem with ℓ p -norm priors , 2005, NeuroImage.

[22]  A. Dale,et al.  Improved Localizadon of Cortical Activity by Combining EEG and MEG with MRI Cortical Surface Reconstruction: A Linear Approach , 1993, Journal of Cognitive Neuroscience.

[23]  Lourens J. Waldorp,et al.  Spatiotemporal EEG/MEG source analysis based on a parametric noise covariance model , 2002, IEEE Transactions on Biomedical Engineering.

[24]  Fetsje Bijma,et al.  The spatiotemporal MEG covariance matrix modeled as a sum of Kronecker products , 2005, NeuroImage.

[25]  M Huang,et al.  Multi-start downhill simplex method for spatio-temporal source localization in magnetoencephalography. , 1998, Electroencephalography and clinical neurophysiology.

[26]  Michael Elad,et al.  Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[27]  J. D. Weerd,et al.  Spectro-temporal representations and time-varying spectra of evoked potentials , 1981, Biological Cybernetics.

[28]  Tohru Ozaki,et al.  A solution to the dynamical inverse problem of EEG generation using spatiotemporal Kalman filtering , 2004, NeuroImage.

[29]  S. Baillet,et al.  Localization of realistic cortical activity in MEG using current multipoles , 2004, NeuroImage.

[30]  Richard M. Leahy,et al.  A comparison of random field theory and permutation methods for the statistical analysis of MEG data , 2005, NeuroImage.

[31]  Manfred Fuchs,et al.  Numerical aspects of spatio-temporal current density reconstruction from EEG-/MEG-data , 2001, IEEE Transactions on Medical Imaging.

[32]  E. Somersalo,et al.  Statistical and computational inverse problems , 2004 .

[33]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[34]  D. Barth,et al.  Neuromagnetic localization of epileptiform spike activity in the human brain. , 1982, Science.

[35]  Anders M. Dale,et al.  Vector-based spatial–temporal minimum L1-norm solution for MEG , 2006, NeuroImage.

[36]  Rob S. MacLeod,et al.  Inverse electrocardiography by simultaneous imposition of multiple constraints , 1999, IEEE Transactions on Biomedical Engineering.

[37]  Yiheng Zhang,et al.  An analytical comparison of three spatio-temporal regularization methods for dynamic linear inverse problems in a common statistical framework , 2005 .

[38]  D. Lehmann,et al.  Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. , 1994, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[39]  Benoit Cottereau,et al.  Multiresolution imaging of MEG cortical sources using an explicit piecewise model , 2007, NeuroImage.

[40]  J.C. Mosher,et al.  Multiple dipole modeling and localization from spatio-temporal MEG data , 1992, IEEE Transactions on Biomedical Engineering.

[41]  R. Tibshirani,et al.  Empirical bayes methods and false discovery rates for microarrays , 2002, Genetic epidemiology.

[42]  A. van Oosterom,et al.  Source parameter estimation in inhomogeneous volume conductors of arbitrary shape , 1989, IEEE Transactions on Biomedical Engineering.

[43]  R. Hari,et al.  Activation of the human posterior parietal cortex by median nerve stimulation , 2004, Experimental Brain Research.

[44]  J. Kaas,et al.  Multiple representations of the body within the primary somatosensory cortex of primates. , 1979, Science.

[45]  L. Kaufman,et al.  Magnetic source imaging based on the Minimum-Norm Least-Squares Inverse , 2005, Brain Topography.

[46]  R. Hari,et al.  Studies of auditory evoked magnetic and electric responses: Modality specificity and modelling , 1983 .

[47]  R. Ilmoniemi,et al.  Effects of interstimulus interval on somatosensory evoked magnetic fields (SEFs): a hypothesis concerning SEF generation at the primary sensorimotor cortex. , 1996, Electroencephalography and clinical neurophysiology.

[48]  A. Dale,et al.  Distributed current estimates using cortical orientation constraints , 2006, Human brain mapping.

[49]  Donald Goldfarb,et al.  Second-order cone programming , 2003, Math. Program..

[50]  Emery N. Brown,et al.  PARAMETER ESTIMATION AND DYNAMIC SOURCE LOCALIZATION FOR THE MAGNETOENCEPHALOGRAPHY (MEG) INVERSE PROBLEM , 2007, 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[51]  R. Hari,et al.  Magnetoencephalography in the study of human somatosensory cortical processing. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[52]  Bhaskar D. Rao,et al.  Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm , 1997, IEEE Trans. Signal Process..

[53]  Barry D. Van Veen,et al.  Cortical patch basis model for spatially extended neural activity , 2006, IEEE Transactions on Biomedical Engineering.

[54]  M. Scherg,et al.  Two bilateral sources of the late AEP as identified by a spatio-temporal dipole model. , 1985, Electroencephalography and clinical neurophysiology.