A geometric approach for Hermite subdivision

We present a non-stationary, non-uniform scheme for two-point Hermite subdivision. The novelty of this approach relies on a geometric interpretation of the subdivision steps—related to generalized Bernstein bases—which permits to overcome the usually unavoidable analytical difficulties. The main advantages consist in extra smoothness conditions, which in turn produce highly regular limit curves, and in an elegant structure of the subdivision—described by three de Casteljau type matrices. As a by-product, the scheme is inherently shape preserving.

[1]  Monotone and Convex C1 Hermite Interpolants Generated by a Subdivision Scheme , 2003 .

[2]  P. Sablonnière,et al.  Shape-preserving C1 Hermite interpolants generated by a Gori-Pitolli subdivision scheme , 2008 .

[3]  D. Schweikert An Interpolation Curve Using a Spline in Tension , 1966 .

[4]  Carl de Boor,et al.  Cutting corners always works , 1987, Comput. Aided Geom. Des..

[5]  Carla Manni,et al.  Curve and surface construction using Hermite subdivision schemes , 2010, J. Comput. Appl. Math..

[6]  Josef Hoschek,et al.  Fundamentals of computer aided geometric design , 1996 .

[7]  Tim N. T. Goodman,et al.  Blossoming beyond Extended Chebyshev Spaces , 2001, J. Approx. Theory.

[8]  J. M. Peña,et al.  Critical Length for Design Purposes and Extended Chebyshev Spaces , 2003 .

[9]  Paolo Costantini,et al.  Curve and surface construction using variable degree polynomial splines , 2000, Comput. Aided Geom. Des..

[10]  Paul Sablonnière Bernstein-Type Bases and Corner Cutting Algorithms for C1 Merrien's Curves , 2004, Adv. Comput. Math..

[11]  Tom Lyche,et al.  On a class of weak Tchebycheff systems , 2005, Numerische Mathematik.

[12]  C. Manni,et al.  Geometric Construction of Generalized Cubic Splines , 2006 .

[13]  L. Gori,et al.  A class of totally positive refinable functions , 2000 .

[14]  Carl de Boor,et al.  Local corner cutting and the smoothness of the limiting curve , 1990, Computer Aided Geometric Design.

[15]  Marie-Laurence Mazure,et al.  Chebyshev Spaces and Bernstein Bases , 2005 .

[16]  Jean-Louis Merrien A family of Hermite interpolants by bisection algorithms , 2005, Numerical Algorithms.

[17]  Jean-Louis Merrien,et al.  A 4-point Hermite subdivision scheme , 2001 .

[18]  J. Gregory,et al.  Shape Preserving Piecewise Rational Interpolation , 1985 .

[19]  Tom Lyche,et al.  C1 Interpolatory Subdivision with Shape Constraints for Curves , 2006, SIAM J. Numer. Anal..

[20]  Juan Manuel Peña,et al.  Shape preserving representations and optimality of the Bernstein basis , 1993, Adv. Comput. Math..

[21]  C. Manni,et al.  On Constrained Nonlinear Hermite Subdivision , 2008 .

[22]  Serge Dubuc,et al.  Scalar and Hermite subdivision schemes , 2006 .

[23]  J.-L. Merrien Interpolants d'Hermite C2 obtenus par subdivision , 1999 .