On contact graphs of totally separable packings in low dimensions

The contact graph of a packing of translates of a convex body in Euclidean $d$-space $\mathbb E^d$ is the simple graph whose vertices are the members of the packing, and whose two vertices are connected by an edge if the two members touch each other. A packing of translates of a convex body is called totally separable, if any two members can be separated by a hyperplane in $\mathbb E^d$ disjoint from the interior of every packing element. We give upper bounds on the maximum vertex degree (called separable Hadwiger number) and the maximum number of edges (called maximum separable contact number) of the contact graph of a totally separable packing of $n$ translates of an arbitrary smooth convex body in $\mathbb E^d$ with $d=2,3,4$. In the proofs, linear algebraic and convexity methods are combined with volumetric and packing density estimates based on the underlying isoperimetric (resp., reverse isoperimetric) inequality.

[2]  Z. Lángi,et al.  Minimizing the mean projections of finite ρ-separable packings ∗† , 2018 .

[3]  Károly Bezdek,et al.  On the Maximum Number of Touching Pairs in a Finite Packing of Translates of a Convex Body , 2002, J. Comb. Theory, Ser. A.

[4]  K. Bezdek,et al.  On k+-neighbour Packings and One-sided Hadwiger Configurations , 2003 .

[5]  Oleg R. Musin,et al.  A survey on the kissing numbers , 2015 .

[6]  L. Danzer,et al.  Über zwei Probleme bezüglich konvexer Körper von P. Erdös und von V. L. Klee , 1962 .

[7]  G. Kertész On totally separable packings of equal balls , 1988 .

[8]  N. J. A. Sloane,et al.  New Bounds on the Number of Unit Spheres That Can Touch a Unit Sphere in n Dimensions , 1979, J. Comb. Theory, Ser. A.

[9]  H. Hadwiger,et al.  Über Treffanzahlen bei translationsgleichen Eikörpern , 1957 .

[10]  B. L. Waerden,et al.  Das Problem der dreizehn Kugeln , 1952 .

[11]  E. Steinitz Bedingt konvergente Reihen und konvexe Systeme. , 1913 .

[12]  H. Minkowski Dichteste gitterförmige Lagerung kongruenter Körper , 1904 .

[13]  O. Musin The kissing number in four dimensions , 2003, math/0309430.

[14]  K. Bezdek,et al.  On contact graphs of totally separable domains , 2017, Aequationes mathematicae.

[15]  L. Tóth,et al.  On totally separable domains , 1973 .

[16]  J. R. Reay Generalizations of a theorem of carathéodory , 1965 .

[17]  Balázs Szalkai,et al.  On contact numbers of totally separable unit sphere packings , 2016, Discret. Math..

[18]  Wlodzimierz Kuperberg,et al.  Optimal Arrangements in Packing Congruent Balls in a Spherical Container , 2007, Discret. Comput. Geom..

[19]  R. Rankin The Closest Packing of Spherical Caps in n Dimensions , 1955, Proceedings of the Glasgow Mathematical Association.

[20]  István Talata,et al.  Exponential Lower Bound for the Translative Kissing Numbers of d -Dimensional Convex Bodies , 1998, Discret. Comput. Geom..

[21]  Helmut Groemer,et al.  Abschätzungen für die Anzahl der konvexen Körper, die einen konvexen Körper berühren , 1961 .

[22]  Keith Ball,et al.  Volume Ratios and a Reverse Isoperimetric Inequality , 1989, math/9201205.