Enceladus plume variability and the neutral gas densities in Saturn's magnetosphere

[1] Neutral particle dominance over charged particles in Saturn's magnetosphere was evident prior to Cassini's arrival at Saturn in 2004. The observation of active plumes emanating from the south pole of Enceladus suggests that this small moon is likely to be the principal source of neutrals in Saturn's magnetosphere. Cassini has flown through the plumes on several occasions, and the resulting data imply the source rate is variable (∼1027 to 1028 water molecules/s). Here we use Cassini plasma spectrometer and Cassini magnetospheric imaging instrument observations to update neutral particle lifetimes and then use the most recent processed versions of Cassini ion neutral mass spectrometer observations made during encounters E2, E3, and E5 to constrain a 3-D multispecies neutral particle model. This procedure improves constraints on the plume source rate, ejection velocity, and plume divergence. We find that the plume source rate varies by at least a factor of 4 over the 7 month period considered. Additionally, we find that previous estimates of the plume source rates based on E2 observations are most likely overestimated because the background neutral torus has not been adequately account for. On the basis of these results, we discuss the implications of this variability on global neutral particle distributions.

[1]  D. Young,et al.  Enceladus: The likely dominant nitrogen source in Saturn's magnetosphere , 2007 .

[2]  W. Huebner,et al.  Solar photo rates for planetary atmospheres and atmospheric pollutants , 1984 .

[3]  R. Robinson,et al.  Linear transport theory of auroral-proton precipitation: a comparison with observations. Report for June 1986-June 1987 , 1987 .

[4]  I. Dandouras,et al.  Multi-instrument analysis of electron populations in Saturn's magnetosphere , 2008 .

[5]  A. Farmer Saturn in hot water: Viscous evolution of the Enceladus torus , 2008, 0806.1523.

[6]  K. A. Smith,et al.  Charge transfer of 0.5-, 1.5-, and 5-keV protons with H{sub 2}O: Absolute differential and integral cross sections , 1997 .

[7]  Robert L. Tokar,et al.  Plasma in Saturn's Nightside Magnetosphere and the Implications for Global Circulation , 2009 .

[8]  Henrik Melin,et al.  The distribution of atomic hydrogen and oxygen in the magnetosphere of Saturn , 2009 .

[9]  Robert T. Pappalardo,et al.  Evidence for temporal variability of Enceladus' gas jets: Modeling of Cassini observations , 2008 .

[10]  V. Shematovich,et al.  Titan's atomic and molecular nitrogen tori , 2004, physics/0407113.

[11]  L. Esposito,et al.  Monte Carlo simulations of the water vapor plumes on Enceladus , 2007 .

[12]  M. Dougherty,et al.  Ion and neutral sources and sinks within Saturn's inner magnetosphere: Cassini results , 2008 .

[13]  U. Beckmann,et al.  How the Enceladus dust plume feeds Saturn’s E ring , 2010 .

[14]  J. Richardson,et al.  Saturn: Search for a missing water source , 2002 .

[15]  M. Dougherty,et al.  Electron sources in Saturn's magnetosphere , 2007 .

[16]  Rosaly M. C. Lopes,et al.  Cassini Encounters Enceladus: Background and the Discovery of a South Polar Hot Spot , 2006, Science.

[17]  J. E. Richards,et al.  The Cassini Ion and Neutral Mass Spectrometer (INMS) Investigation , 2004 .

[18]  W. Fite,et al.  Electron Capture and Loss in Collisions of Heavy Ions with Atomic Oxygen , 1971 .

[19]  W. Ip,et al.  Cassini Ion and Neutral Mass Spectrometer: Enceladus Plume Composition and Structure , 2006, Science.

[20]  Carolyn C. Porco,et al.  Association of the jets of Enceladus with the warmest regions on its south-polar fractures , 2007, Nature.

[21]  D. Stevenson,et al.  Volcanism and igneous processes in small icy satellites , 1982, Nature.

[22]  E. Murad,et al.  Cross Sections and Product Kinetic Energy Analysis of H2O+ -H2O collisions at Suprathermal Energies , 1990 .

[23]  S. Squyres,et al.  The evolution of Enceladus , 1983 .

[24]  I. Kanik,et al.  Collisions of electrons with atomic oxygen: current status (vol 83, pg 589, 2005) , 2005 .

[25]  Robert E. Johnson,et al.  Understanding the escape of water from Enceladus , 2007 .

[26]  C. Hansen,et al.  Water vapour jets inside the plume of gas leaving Enceladus , 2008, Nature.

[27]  Robert L. Tokar,et al.  Cassini plasma spectrometer thermal ion measurements in Saturn's inner magnetosphere , 2008 .

[28]  J. Richardson,et al.  A self‐consistent model of plasma and neutrals at Saturn: Neutral cloud morphology , 2005 .

[29]  N. Mason,et al.  Cross Sections for Electron Collisions with Water Molecules , 2005 .

[30]  R. T. Pappalardo,et al.  Shear heating as the origin of the plumes and heat flux on Enceladus , 2007, Nature.

[31]  D. Young,et al.  Enceladus : A potential source of ammonia products and molecular nitrogen for Saturn's magnetosphere , 2008 .

[32]  D. Shemansky,et al.  Detection of the hydroxyl radical in the Saturn magnetosphere , 1993, Nature.

[33]  T. Märk,et al.  Total, partial, and electron-capture cross sections for ionization of water vapor by 20-150 keV protons. , 2001, Physical review letters.

[34]  J. Richardson,et al.  Thermal plasma and neutral gas in Saturn's magnetosphere , 1998 .

[35]  Robert E. Johnson Energetic Charged-Particle Interactions with Atmospheres and Surfaces , 1990 .

[36]  B. Lindsay,et al.  Charge transfer of keV O+ ions with CO and H2O , 2001 .

[37]  J. Scudder,et al.  Survey of low‐energy plasma electrons in Saturn's magnetosphere: Voyagers 1 and 2 , 1983 .

[38]  R E Johnson,et al.  Composition and Dynamics of Plasma in Saturn's Magnetosphere , 2005, Science.

[39]  Jonathan I. Lunine,et al.  Enceladus' plume: Compositional evidence for a hot interior , 2007 .

[40]  J. Richardson,et al.  Neutral cloud interaction with Saturn's main rings , 2007 .

[41]  Robert L. Tokar,et al.  Cassini detection of Enceladus' cold water‐group plume ionosphere , 2009 .

[42]  Robert L. Tokar,et al.  The Enceladus and OH Tori at Saturn , 2006 .

[43]  Robert L. Tokar,et al.  Fine jet structure of electrically charged grains in Enceladus' plume , 2009 .

[44]  J. Greenwood,et al.  Measurements of Absolute, Single Charge-Exchange Cross Sections of H+, He+ and He2+ with H2O and CO2 , 2000 .

[45]  C. Hansen,et al.  Enceladus' Water Vapor Plume , 2006, Science.

[46]  W. Ip,et al.  Liquid water on Enceladus from observations of ammonia and 40Ar in the plume , 2009, Nature.

[47]  K. N. Joshipura,et al.  Electron impact total cross sections of CHx ,N H x and OH radicals vis-` a-vis their parent molecules , 2001 .

[48]  G. Neukum,et al.  Cassini Observes the Active South Pole of Enceladus , 2006, Science.