Robust game theory

We present a distribution-free model of incomplete-information games, both with and without private information, in which the players use a robust optimization approach to contend with payoff uncertainty. Our ``robust game'' model relaxes the assumptions of Harsanyi's Bayesian game model, and provides an alternative distribution-free equilibrium concept, which we call ``robust-optimization equilibrium,'' to that of the ex post equilibrium. We prove that the robust-optimization equilibria of an incomplete-information game subsume the ex post equilibria of the game and are, unlike the latter, guaranteed to exist when the game is finite and has bounded payoff uncertainty set. For arbitrary robust finite games with bounded polyhedral payoff uncertainty sets, we show that we can compute a robust-optimization equilibrium by methods analogous to those for identifying a Nash equilibrium of a finite game with complete information. In addition, we present computational results.

[1]  Christos H. Papadimitriou,et al.  Algorithms, Games, and the Internet , 2001, ICALP.

[2]  J. Nash Equilibrium Points in N-Person Games. , 1950, Proceedings of the National Academy of Sciences of the United States of America.

[3]  S. Zamir,et al.  Formulation of Bayesian analysis for games with incomplete information , 1985 .

[4]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.

[5]  J. Harsanyi Games with Incomplete Information Played by 'Bayesian' Players, Part III. The Basic Probability Distribution of the Game , 1968 .

[6]  Massimo Marinacci,et al.  Ambiguous Games , 2000, Games Econ. Behav..

[7]  Jan Verschelde,et al.  Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation , 1999, TOMS.

[8]  Kin Chung Lo,et al.  Equilibrium in Beliefs under Uncertainty , 1996 .

[9]  Herbert E. Scarf,et al.  The Computation of Economic Equilibria , 1974 .

[10]  Arkadi Nemirovski,et al.  Robust solutions of uncertain linear programs , 1999, Oper. Res. Lett..

[11]  B. Sturmfels SOLVING SYSTEMS OF POLYNOMIAL EQUATIONS , 2002 .

[12]  Ariel Rubinstein,et al.  A Course in Game Theory , 1995 .

[13]  Herbert E. Scarf,et al.  The Approximation of Fixed Points of a Continuous Mapping , 1967 .

[14]  S. Kakutani A generalization of Brouwer’s fixed point theorem , 1941 .

[15]  F. Knight The economic nature of the firm: From Risk, Uncertainty, and Profit , 2009 .

[16]  Francesco Mallegni,et al.  The Computation of Economic Equilibria , 1973 .

[17]  John C. Harsanyi,et al.  Games with Incomplete Information Played by "Bayesian" Players, I-III: Part I. The Basic Model& , 2004, Manag. Sci..

[18]  D. Fudenberg,et al.  The Theory of Learning in Games , 1998 .

[19]  Anna R. Karlin,et al.  Competitive auctions , 2006, Games Econ. Behav..

[20]  Robert Wilson,et al.  A global Newton method to compute Nash equilibria , 2003, J. Econ. Theory.

[21]  J. Wardrop ROAD PAPER. SOME THEORETICAL ASPECTS OF ROAD TRAFFIC RESEARCH. , 1952 .

[22]  Laurent El Ghaoui,et al.  Robust Solutions to Uncertain Semidefinite Programs , 1998, SIAM J. Optim..

[23]  Sérgio Ribeiro da Costa Werlang,et al.  Nash equilibrium under knightian uncertainty: breaking down backward induction (extensively revised version) , 1993 .

[24]  J. Neumann,et al.  Theory of Games and Economic Behavior. , 1945 .

[25]  R. McKelvey,et al.  Computation of equilibria in finite games , 1996 .

[26]  Arkadi Nemirovski,et al.  Robust solutions of Linear Programming problems contaminated with uncertain data , 2000, Math. Program..

[27]  Tsoy–Wo Ma,et al.  Banach-Hilbert Spaces, Vector Measures and Group Representations , 2002 .

[28]  L. Brouwer Über Abbildung von Mannigfaltigkeiten , 1921 .

[29]  R. Myerson,et al.  Efficient and Durable Decision Rules with Incomplete Information , 1983 .

[30]  Philip Wolfe,et al.  Contributions to the theory of games , 1953 .

[31]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[32]  Allen L. Soyster,et al.  Technical Note - Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming , 1973, Oper. Res..

[33]  Arkadi Nemirovski,et al.  Robust Convex Optimization , 1998, Math. Oper. Res..

[34]  Peter Klibanofi,et al.  Uncertainty, Decision, and Normal Form Games , 1996 .

[35]  R. Courant Variational methods for the solution of problems of equilibrium and vibrations , 1943 .

[36]  Laurent El Ghaoui,et al.  Robust Solutions to Least-Squares Problems with Uncertain Data , 1997, SIAM J. Matrix Anal. Appl..

[37]  C. E. Lemke,et al.  Equilibrium Points of Bimatrix Games , 1964 .

[38]  J. M. Bilbao,et al.  Contributions to the Theory of Games , 2005 .

[39]  Andrew McLennan,et al.  Gambit: Software Tools for Game Theory , 2006 .

[40]  Melvyn Sim,et al.  The Price of Robustness , 2004, Oper. Res..

[41]  J. G. Wardrop,et al.  Some Theoretical Aspects of Road Traffic Research , 1952 .

[42]  Bernhard von Stengel,et al.  Chapter 45 Computing equilibria for two-person games , 2002 .

[43]  Allan Borodin,et al.  Online computation and competitive analysis , 1998 .

[44]  Yoav Shoham,et al.  Simple search methods for finding a Nash equilibrium , 2004, Games Econ. Behav..

[45]  B. Stengel,et al.  COMPUTING EQUILIBRIA FOR TWO-PERSON GAMES , 1996 .

[46]  Drew Fudenberg,et al.  Game theory (3. pr.) , 1991 .

[47]  A. Talman,et al.  Simplicial variable dimension algorithms for solving the nonlinear complementarity problem on a product of unit simplices using a general labelling , 1987 .

[48]  Melvyn Sim,et al.  Robust linear optimization under general norms , 2004, Oper. Res. Lett..

[49]  I. Gilboa,et al.  Maxmin Expected Utility with Non-Unique Prior , 1989 .

[50]  Gerard Debreu,et al.  A Social Equilibrium Existence Theorem* , 1952, Proceedings of the National Academy of Sciences.

[51]  H. F. Bohnenblust,et al.  On a Theorem of Ville , 1949 .

[52]  J. Nash NON-COOPERATIVE GAMES , 1951, Classics in Game Theory.

[53]  Anthony V. Fiacco,et al.  Nonlinear programming;: Sequential unconstrained minimization techniques , 1968 .

[54]  S. Morris The Common Prior Assumption in Economic Theory , 1995, Economics and Philosophy.

[55]  Richard P. McLean,et al.  Optimal Selling Strategies under Uncertainty for a Discriminating Monopolist When Demands Are Interdependent , 1985 .

[56]  Craig Boutilier,et al.  Regret Minimizing Equilibria and Mechanisms for Games with Strict Type Uncertainty , 2004, UAI.

[57]  Gerard van der Laan,et al.  On the Computation of Fixed Points in the Product Space of Unit Simplices and an Application to Noncooperative N Person Games , 1982, Math. Oper. Res..

[58]  Ruchira S. Datta Using computer algebra to find nash equilibria , 2003, ISSAC '03.

[59]  Moshe Tennenholtz,et al.  Bundling equilibrium in combinatorial auctions , 2002, Games Econ. Behav..

[60]  Melvyn Sim,et al.  Robust discrete optimization and network flows , 2003, Math. Program..

[61]  E. Zeidler,et al.  Fixed-point theorems , 1986 .