The LEAF picosecond pulse radiolysis facility at Brookhaven National Laboratory

The BNL Laser-Electron Accelerator Facility (LEAF) uses a laser-pulsed photocathode, radio-frequency electron gun to generate ⩾7 ps pulses of 8.7 MeV electrons for pulse radiolysis experiments. The compact and operationally simple accelerator system includes synchronized laser pulses that can be used to probe or excite the electron-pulsed samples to examine the dynamics and reactivity of chemical species on the picosecond time scale.

[1]  J. Wishart,et al.  Pulse radiolysis studies of dendritic macromolecules with biphenyl peripheral groups and a ruthenium tris-bipyridine core. , 2001, Journal of the American Chemical Society.

[2]  John R. Miller,et al.  Faster dissociation: measured rates and computed effects on barriers in aryl halide radical anions. , 2004, Journal of the American Chemical Society.

[3]  Kengo Itoh,et al.  Reactions of Charged Species in Supercritical Xenon as Studied by Pulse Radiolysis , 2003 .

[4]  Robin D. Rogers,et al.  Ionic liquids as green solvents : progress and prospects , 2003 .

[5]  I. Pogorelsky,et al.  EXPERIMENTAL CHARACTERIZATION OF THE HIGH-BRIGHTNESS ELECTRON PHOTOINJECTOR , 1995 .

[6]  Farhataziz,et al.  Radiation Chemistry: Principles and Applications , 1987 .

[7]  Robert H. Austin,et al.  Design and operation of the Compact Infrared Free-Electron Laser (CIRFEL) , 1995, Optics & Photonics.

[8]  Andrew R. Cook,et al.  Spur Decay of the Solvated Electron in Picosecond Radiolysis Measured with Time-Correlated Absorption Spectroscopy † , 2000 .

[9]  M. Uesaka,et al.  Ultra-fast pulse radiolysis system combined with a laser photocathode RF gun and a femtosecond laser , 2002 .

[10]  J. Wishart,et al.  Pulse Radiolysis Study of the Reactions of Hydrogen Atoms in the Ionic Liquid Methyltributylammonium Bis[(trifluoromethyl)sulfonyl]imide , 2003 .

[11]  R. Holroyd,et al.  Electron attachment to CO{sub 2} in supercritical ethane , 1999 .

[12]  S. Tagawa,et al.  Measurement of far-infrared subpicosecond coherent radiation for pulse radiolysis , 1999 .

[13]  T. Ueda,et al.  A twin linac pulse radiolysis system (II) , 1987 .

[14]  A new chemical analysis system using a photocathode RF gun , 2000 .

[15]  K. Schanze,et al.  Charge Transfer through Terthiophene End-Capped Poly(arylene ethynylene)s , 2004 .

[16]  S. Takeda,et al.  High-Current Single Bunch Electron Linear Accelerator , 1985, IEEE Transactions on Nuclear Science.

[17]  Charles D. Jonah,et al.  Radiation Chemistry: Present Status and Future Trends , 2001 .

[18]  G. G. Jayson,et al.  Fundamentals of radiation chemistry , 1972 .

[19]  L. H. Luthjens,et al.  Optically isolated electronic trigger system for experiments on a subnanosecond time scale with a pulsed Van de Graaff electron accelerator , 1980 .

[20]  Charles D. Jonah,et al.  A wide−time range pulse radiolysis system of picosecond time resolution , 1975 .

[21]  Takahiro Kozawa,et al.  Development of subpicosecond pulse radiolysis system , 2000 .

[22]  P. Neta,et al.  Spectrum and Reactivity of the Solvated Electron in the Ionic Liquid Methyltributylammonium Bis(trifluoromethylsulfonyl)imide , 2003 .

[23]  D. Nocera,et al.  Photochemistry and radiation chemistry : complementary methods for the study of electron transfer , 1998 .

[24]  J W Hunt,et al.  Design and performance of a pulse radiolysis system capable of picosecond time resolution. , 1970, The Review of scientific instruments.

[25]  R. Holroyd,et al.  Density inhomogeneities and electron mobility in supercritical xenon , 2003 .