The largest eigenvalues of finite rank deformation of large Wigner matrices: Convergence and nonuniversality of the fluctuations.

We investigate the asymptotic spectrum of complex or real Deformed Wigner matrices when the entries of the Hermitian (resp., symmetric) Wigner matrix have a symmetric law satisfying a Poincare inequality. The perturbation is Hermitian (resp., symmetric) and deterministic with all but finitely many eigenvalues equal to zero. We first show that, as soon as the first largest or last smallest eigenvalues of the perturbation are sufficiently far from zero, the corresponding eigenvalues of the deformed Wigner matrix almost surely exit the limiting semicircle compact sup- port as the size becomes large. The corresponding limits are universal in the sense that they only involve the variance of the entries of the Wigner matrix. On the other hand, when the perturbation is diagonal with a sole simple nonnull eigenvalue large enough, we prove that the fluctuations of the largest eigenvalue are not universal and vary with the particular distribution of the entries of the Wigner matrix.

[1]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[2]  Heinz-Günther Tillmann,et al.  Randverteilungen analytischer Funktionen und Distributionen , 1953 .

[3]  W. Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[4]  P. A. P. Moran,et al.  An introduction to probability theory , 1968 .

[5]  L. Arnold,et al.  On Wigner's semicircle law for the eigenvalues of random matrices , 1971 .

[6]  W. Feller,et al.  An Introduction to Probability Theory and Its Applications, Vol. II , 1972, The Mathematical Gazette.

[7]  P. Billingsley,et al.  Probability and Measure , 1980 .

[8]  János Komlós,et al.  The eigenvalues of random symmetric matrices , 1981, Comb..

[9]  P. Meyer,et al.  Sur les inegalites de Sobolev logarithmiques. I , 1982 .

[10]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[11]  Z. D. Bai,et al.  Necessary and Sufficient Conditions for Almost Sure Convergence of the Largest Eigenvalue of a Wigner Matrix , 1988 .

[12]  Gilbert Saporta,et al.  Probabilités, Analyse des données et statistique , 1991 .

[13]  Roy Mathias,et al.  The Hadamard Operator Norm of a Circulant and Applications , 1997 .

[14]  M. Artin,et al.  Société Mathématique de France , 1994 .

[15]  C. Tracy,et al.  Level-spacing distributions and the Airy kernel , 1992, hep-th/9211141.

[16]  J. W. Silverstein,et al.  Analysis of the limiting spectral distribution of large dimensional random matrices , 1995 .

[17]  Boris A. Khoruzhenko,et al.  Asymptotic properties of large random matrices with independent entries , 1996 .

[18]  J. W. Silverstein,et al.  No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices , 1998 .

[19]  S. Bobkov,et al.  Exponential Integrability and Transportation Cost Related to Logarithmic Sobolev Inequalities , 1999 .

[20]  Z. Bai METHODOLOGIES IN SPECTRAL ANALYSIS OF LARGE DIMENSIONAL RANDOM MATRICES , A REVIEW , 1999 .

[21]  J. W. Silverstein,et al.  EXACT SEPARATION OF EIGENVALUES OF LARGE DIMENSIONAL SAMPLE COVARIANCE MATRICES , 1999 .

[22]  A. Soshnikov Universality at the Edge of the Spectrum¶in Wigner Random Matrices , 1999, math-ph/9907013.

[23]  Djalil CHAFAÏ,et al.  Sur les in'egalit'es de Sobolev logarithmiques , 2000 .

[24]  I. Johnstone On the distribution of the largest principal component , 2000 .

[25]  I. Johnstone On the distribution of the largest eigenvalue in principal components analysis , 2001 .

[26]  M. Ledoux The concentration of measure phenomenon , 2001 .

[27]  Uffe Haagerup,et al.  A new application of random matrices: Ext(C^*_{red}(F_2)) is not a group , 2002 .

[28]  Hanne Schultz Non-commutative polynomials of independent Gaussian random matrices. The real and symplectic cases. , 2003 .

[29]  S. Péché,et al.  Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices , 2004, math/0403022.

[30]  J. W. Silverstein,et al.  Eigenvalues of large sample covariance matrices of spiked population models , 2004, math/0408165.

[31]  S. Péché The largest eigenvalue of small rank perturbations of Hermitian random matrices , 2004, math/0411487.

[32]  D. Paul,et al.  Asymptotics of the leading sample eigenvalues for a spiked covariance model , 2004 .

[33]  Jianfeng Yao,et al.  On the convergence of the spectral empirical process of Wigner matrices , 2005 .

[34]  P. Rousseeuw,et al.  Wiley Series in Probability and Mathematical Statistics , 2005 .

[35]  C. Donati-Martin,et al.  Strong asymptotic freeness for Wigner and Wishart matrices preprint , 2005, math/0504414.

[36]  A. Ruzmaikina Universality of the Edge Distribution of Eigenvalues of Wigner Random Matrices with Polynomially Decaying Distributions of Entries , 2006 .

[37]  Mylene Maida,et al.  Large deviations for the largest eigenvalue of rank one deformations of Gaussian ensembles , 2006, math/0609738.

[38]  Grandes déviations et fluctuations des valeurs propres maximales de matrices aléatoires , 2006 .

[39]  Mylène Maïda,et al.  Large deviations for the largest eigenvalue of rank one deformations of Gaussian ensembles , 2006 .

[40]  S. Péché The largest eigenvalue of small rank perturbations of Hermitian random matrices , 2006 .

[41]  Journal Url,et al.  Large Deviations for the largest eigenvalue of rank one deformations of Gaussian ensembles , 2007 .

[42]  D. Paul ASYMPTOTICS OF SAMPLE EIGENSTRUCTURE FOR A LARGE DIMENSIONAL SPIKED COVARIANCE MODEL , 2007 .

[43]  G. Biroli,et al.  On the top eigenvalue of heavy-tailed random matrices , 2006, cond-mat/0609070.

[44]  D. Féral,et al.  The Largest Eigenvalue of Rank One Deformation of Large Wigner Matrices , 2006, math/0605624.

[45]  Z. Bai,et al.  METHODOLOGIES IN SPECTRAL ANALYSIS OF LARGE DIMENSIONAL RANDOM MATRICES, A REVIEW , 2008 .

[46]  M. Brewer With comments by , 2008 .

[47]  Z. Bai,et al.  Central limit theorems for eigenvalues in a spiked population model , 2008, 0806.2503.