The largest eigenvalues of finite rank deformation of large Wigner matrices: Convergence and nonuniversality of the fluctuations.
暂无分享,去创建一个
[1] William Feller,et al. An Introduction to Probability Theory and Its Applications , 1951 .
[2] Heinz-Günther Tillmann,et al. Randverteilungen analytischer Funktionen und Distributionen , 1953 .
[3] W. Feller,et al. An Introduction to Probability Theory and Its Applications , 1951 .
[4] P. A. P. Moran,et al. An introduction to probability theory , 1968 .
[5] L. Arnold,et al. On Wigner's semicircle law for the eigenvalues of random matrices , 1971 .
[6] W. Feller,et al. An Introduction to Probability Theory and Its Applications, Vol. II , 1972, The Mathematical Gazette.
[7] P. Billingsley,et al. Probability and Measure , 1980 .
[8] János Komlós,et al. The eigenvalues of random symmetric matrices , 1981, Comb..
[9] P. Meyer,et al. Sur les inegalites de Sobolev logarithmiques. I , 1982 .
[10] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[11] Z. D. Bai,et al. Necessary and Sufficient Conditions for Almost Sure Convergence of the Largest Eigenvalue of a Wigner Matrix , 1988 .
[12] Gilbert Saporta,et al. Probabilités, Analyse des données et statistique , 1991 .
[13] Roy Mathias,et al. The Hadamard Operator Norm of a Circulant and Applications , 1997 .
[14] M. Artin,et al. Société Mathématique de France , 1994 .
[15] C. Tracy,et al. Level-spacing distributions and the Airy kernel , 1992, hep-th/9211141.
[16] J. W. Silverstein,et al. Analysis of the limiting spectral distribution of large dimensional random matrices , 1995 .
[17] Boris A. Khoruzhenko,et al. Asymptotic properties of large random matrices with independent entries , 1996 .
[18] J. W. Silverstein,et al. No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices , 1998 .
[19] S. Bobkov,et al. Exponential Integrability and Transportation Cost Related to Logarithmic Sobolev Inequalities , 1999 .
[20] Z. Bai. METHODOLOGIES IN SPECTRAL ANALYSIS OF LARGE DIMENSIONAL RANDOM MATRICES , A REVIEW , 1999 .
[21] J. W. Silverstein,et al. EXACT SEPARATION OF EIGENVALUES OF LARGE DIMENSIONAL SAMPLE COVARIANCE MATRICES , 1999 .
[22] A. Soshnikov. Universality at the Edge of the Spectrum¶in Wigner Random Matrices , 1999, math-ph/9907013.
[23] Djalil CHAFAÏ,et al. Sur les in'egalit'es de Sobolev logarithmiques , 2000 .
[24] I. Johnstone. On the distribution of the largest principal component , 2000 .
[25] I. Johnstone. On the distribution of the largest eigenvalue in principal components analysis , 2001 .
[26] M. Ledoux. The concentration of measure phenomenon , 2001 .
[27] Uffe Haagerup,et al. A new application of random matrices: Ext(C^*_{red}(F_2)) is not a group , 2002 .
[28] Hanne Schultz. Non-commutative polynomials of independent Gaussian random matrices. The real and symplectic cases. , 2003 .
[29] S. Péché,et al. Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices , 2004, math/0403022.
[30] J. W. Silverstein,et al. Eigenvalues of large sample covariance matrices of spiked population models , 2004, math/0408165.
[31] S. Péché. The largest eigenvalue of small rank perturbations of Hermitian random matrices , 2004, math/0411487.
[32] D. Paul,et al. Asymptotics of the leading sample eigenvalues for a spiked covariance model , 2004 .
[33] Jianfeng Yao,et al. On the convergence of the spectral empirical process of Wigner matrices , 2005 .
[34] P. Rousseeuw,et al. Wiley Series in Probability and Mathematical Statistics , 2005 .
[35] C. Donati-Martin,et al. Strong asymptotic freeness for Wigner and Wishart matrices preprint , 2005, math/0504414.
[36] A. Ruzmaikina. Universality of the Edge Distribution of Eigenvalues of Wigner Random Matrices with Polynomially Decaying Distributions of Entries , 2006 .
[37] Mylene Maida,et al. Large deviations for the largest eigenvalue of rank one deformations of Gaussian ensembles , 2006, math/0609738.
[38] Grandes déviations et fluctuations des valeurs propres maximales de matrices aléatoires , 2006 .
[39] Mylène Maïda,et al. Large deviations for the largest eigenvalue of rank one deformations of Gaussian ensembles , 2006 .
[40] S. Péché. The largest eigenvalue of small rank perturbations of Hermitian random matrices , 2006 .
[41] Journal Url,et al. Large Deviations for the largest eigenvalue of rank one deformations of Gaussian ensembles , 2007 .
[42] D. Paul. ASYMPTOTICS OF SAMPLE EIGENSTRUCTURE FOR A LARGE DIMENSIONAL SPIKED COVARIANCE MODEL , 2007 .
[43] G. Biroli,et al. On the top eigenvalue of heavy-tailed random matrices , 2006, cond-mat/0609070.
[44] D. Féral,et al. The Largest Eigenvalue of Rank One Deformation of Large Wigner Matrices , 2006, math/0605624.
[45] Z. Bai,et al. METHODOLOGIES IN SPECTRAL ANALYSIS OF LARGE DIMENSIONAL RANDOM MATRICES, A REVIEW , 2008 .
[46] M. Brewer. With comments by , 2008 .
[47] Z. Bai,et al. Central limit theorems for eigenvalues in a spiked population model , 2008, 0806.2503.