PERT-BASED PARADIGM FOR MODELING ASSEMBLY OPERATIONS

This paper uses a PERT network for which operation start and finish times are approximated by mixtures of Erlang distributions as the basis of a paradigm for modeling assembly operations. Numerical examples demonstrate that the approximations improve on previously available methods and give accurate estimates in cases involving operation times that are mixtures of Erlangs, exponential, or normal. In addition, a new method of computing lower bounds on operation start times is derived; numerical tests indicate that the method gives tighter bounds than do previously available methods. The significance of the paradigm is discussed, emphasizing the improvement it makes over traditional scheduling paradigms.

[1]  W. Whitt On approximations for queues, I: Extremal distributions , 1984, AT&T Bell Laboratories Technical Journal.

[2]  Lyang Suan Wang,et al.  Management of component accumulation in small-lot assembly systems , 1986 .

[3]  Donald L. Fisher,et al.  Stochastic pert networks: OP diagrams, critical paths and the project completion time , 1985, Comput. Oper. Res..

[4]  M. A. Johnson,et al.  Matching moments to phase distributions: density function shapes , 1990 .

[5]  A. E. Eckberg,et al.  Sharp Bounds on Laplace-Stieltjes Transforms, with Applications to Various Queueing Problems , 1977, Math. Oper. Res..

[6]  A. W. Wortham,et al.  A Statistical Theory for PERT Critical Path Analysis , 1966 .

[7]  D. R. Fulkerson Expected Critical Path Lengths in PERT Networks , 1962 .

[8]  Pierre N. Robillard,et al.  The Completion Time of PERT Networks , 1977, Oper. Res..

[9]  Warren H. Thomas,et al.  Balancing Stochastic Assembly Lines , 1973 .

[10]  Pierre N. Robillard,et al.  Technical Note - Expected Completion Time in Pert Networks , 1976, Oper. Res..

[11]  David A. Sprecher,et al.  Elements of real analysis , 1970 .

[12]  Bajis M. Dodin,et al.  Bounding the Project Completion Time Distribution in PERT Networks , 1985, Oper. Res..

[13]  Vidyadhar G. Kulkarni,et al.  Markov and Markov-Regenerative pert Networks , 1986, Oper. Res..

[14]  S. Elmaghraby On the Expected Duration of PERT Type Networks , 1967 .

[15]  Ward Whitt,et al.  Approximating a Point Process by a Renewal Process, I: Two Basic Methods , 1982, Oper. Res..

[16]  Luc Devroye,et al.  Inequalities for the Completion Times of Stochastic PERT Networks , 1979, Math. Oper. Res..

[17]  Bajis M. Dodin Approximating the distribution functions in stochastic networks , 1985, Comput. Oper. Res..

[18]  T. Aven Upper (lower) bounds on the mean of the maximum (minimum) of a number of random variables , 1985, Journal of Applied Probability.

[19]  Andrew W. Shogan Bounding distributions for a stochastic pert network , 1977, Networks.

[20]  W. Whitt On approximations for queues, III: Mixtures of exponential distributions , 1984, AT&T Bell Laboratories Technical Journal.

[21]  Phase distributions: Selecting parameters to match moments , 1988 .

[22]  George B. Kleindorfer,et al.  Bounding Distributions for a Stochastic Acyclic Network , 1971, Oper. Res..

[23]  C. E. Clark The Greatest of a Finite Set of Random Variables , 1961 .

[24]  S. Saboo,et al.  Recursion models for describing and managing the transient flow of materials in generalized flowlines , 1989 .

[25]  John B. Kidd,et al.  Toyota Production System , 1993 .

[26]  Donald L. Fisher,et al.  Stochastic PERT networks as models of cognition: Derivation of the mean, variance, and distribution of reaction time using Order-of-Processing (OP) diagrams , 1983 .

[27]  Marcel F. Neuts,et al.  Matrix-geometric solutions in stochastic models - an algorithmic approach , 1982 .

[28]  W. E. Wilhelm,et al.  An Approach for Modeling Small-lot Assembly Networks , 1986 .

[29]  D. Cox A use of complex probabilities in the theory of stochastic processes , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[30]  W. Whitt,et al.  The Queueing Network Analyzer , 1983, The Bell System Technical Journal.

[31]  Salah E. Elmaghraby,et al.  Activity networks: Project planning and control by network models , 1977 .

[32]  T. Altiok On the Phase-Type Approximations of General Distributions , 1985 .

[33]  William L. Maxwell,et al.  Theory of scheduling , 1967 .