Anisotropic interpolation error estimates for isoparametric quadrilateral finite elements

Anisotropic local interpolation error estimates are derived for quadrilateral and hexahedral Lagrangian finite elements with straight edges. These elements are allowed to have diameters with different asymptotic behaviour in different space directions. The case of affine elements (parallel-epipeds) with arbitrarily high degree of the shape functions is considered first. Then, a careful examination of the multi-linear map leads to estimates for certain classes of more general, isoparametric elements. As an application, the Galerkin finite element method for a reaction diffusion problem in a polygonal domain is considered. The boundary layers are resolved using anisotropic trapezoidal elements.

[1]  C. Bernardi Optimal finite-element interpolation on curved domains , 1989 .

[2]  T. Apel,et al.  Anisotropic mesh refinement for singularly perturbed reaction diffusion problems , 1998 .

[3]  T. Apel,et al.  Anisotropic mesh refinement in stabilized Galerkin methods , 1996 .

[4]  G. I. Shishkin Mesh approximation of singularly perturbed boundary-value problems for systems of elliptic and parabolic equations , 1995 .

[5]  Thomas,et al.  Local inequalities for anisotropic nite elements and theirapplication to convection-di usion problems , 1995 .

[6]  G. Kunert Error Estimation for Anisotropic Tetrahedral and Triangular Finite Element Meshes , 1998 .

[7]  Michal Křížek,et al.  On semiregular families of triangulations and linear interpolation , 1991 .

[8]  Kunibert G. Siebert,et al.  An a posteriori error estimator for anisotropic refinement , 1996 .

[9]  Waldemar Rachowicz,et al.  An anisotropic h-type mesh-refinement strategy , 1993 .

[10]  I. Babuska,et al.  ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD , 1976 .

[11]  W. C. Rheinboldt,et al.  The hypercircle in mathematical physics , 1958 .

[12]  Michèle Vanmaele,et al.  The interpolation theorem for narrow quadrilateral isoparametric finite elements , 1995 .

[13]  M. Krízek,et al.  On the maximum angle condition for linear tetrahedral elements , 1992 .

[14]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[15]  Ralf Kornhuber,et al.  On adaptive grid refinement in the presence of internal or boundary layers , 1990, IMPACT Comput. Sci. Eng..

[16]  Thomas Apel,et al.  Anisotropic interpolation with applications to the finite element method , 1991, Computing.

[17]  Martin Stynes,et al.  EFFICIENT GENERATION OF ORIENTED MESHES FOR SOLVING CONVECTION-DIFFUSION PROBLEMS , 1997 .

[18]  P. G. Ciarlet,et al.  Interpolation theory over curved elements, with applications to finite element methods , 1972 .

[19]  P. Jamet Estimations d'erreur pour des éléments finis droits presque dégénérés , 1976 .

[20]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.