A single bicontinuous cubic phase induced by fusion peptides.

We report a bicontinuous cubic phase forming in the presence of the Influenza HA fusion peptide in coarse grained molecular dynamics simulations. Starting from a random mixture of DOPE, water, and fusion peptides, we observe spontaneous formation of a stable bicontinuous phase. Unlike all previously reported bicontinuous cubic phases the one formed in our simulations is a single phase in the sense that there are no multiple isolated compartments of water or lipid.

[1]  A. Mark,et al.  Simulation of the spontaneous aggregation of phospholipids into bilayers. , 2001, Journal of the American Chemical Society.

[2]  Siewert J Marrink,et al.  Lipids on the move: simulations of membrane pores, domains, stalks and curves. , 2009, Biochimica et biophysica acta.

[3]  Volker Knecht,et al.  Molecular dynamics simulations of lipid vesicle fusion in atomic detail. , 2007, Biophysical journal.

[4]  Siewert J. Marrink,et al.  The molecular face of lipid rafts in model membranes , 2008, Proceedings of the National Academy of Sciences.

[5]  Siewert J Marrink,et al.  Mechanosensitive membrane channels in action. , 2008, Biophysical journal.

[6]  Syma Khalid,et al.  Coarse-grained MD simulations of membrane protein-bilayer self-assembly. , 2008, Structure.

[7]  R. Templer,et al.  Inverse lyotropic phases of lipids and membrane curvature , 2006, Journal of physics. Condensed matter : an Institute of Physics journal.

[8]  D. Siegel The Gaussian curvature elastic energy of intermediates in membrane fusion. , 2008, Biophysical journal.

[9]  R. Epand,et al.  Effect of influenza hemagglutinin fusion peptide on lamellar/inverted phase transitions in dipalmitoleoylphosphatidylethanolamine: implications for membrane fusion mechanisms. , 2000, Biochimica et biophysica acta.

[10]  Bending frustration of lipid-water mesophases based on cubic minimal surfaces. , 2001, cond-mat/0102466.

[11]  G. Schröder-Turk,et al.  Bicontinuous geometries and molecular self-assembly: comparison of local curvature and global packing variations in genus-three cubic, tetragonal and rhombohedral surfaces , 2006 .

[12]  M. Mueller,et al.  Field theoretic study of bilayer membrane fusion: II. Mechanism of a stalk-hole complex. , 2005, Biophysical journal.

[13]  Hiroshi Noguchi,et al.  Fusion pathways of vesicles: A Brownian dynamics simulation , 2001 .

[14]  Thomas Huber,et al.  G protein-coupled receptors self-assemble in dynamics simulations of model bilayers. , 2007, Journal of the American Chemical Society.

[15]  G. Lindblom,et al.  Cubic phases in biosensing systems , 2008, Analytical and bioanalytical chemistry.

[16]  R. Epand,et al.  Fusion peptides and the mechanism of viral fusion. , 2003, Biochimica et biophysica acta.

[17]  R. Larson,et al.  The MARTINI Coarse-Grained Force Field: Extension to Proteins. , 2008, Journal of chemical theory and computation.

[18]  Lukas K. Tamm,et al.  Membrane structure and fusion-triggering conformational change of the fusion domain from influenza hemagglutinin , 2001, Nature Structural Biology.

[19]  L. Tamm,et al.  A host-guest system to study structure-function relationships of membrane fusion peptides. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[20]  M. Kozlov,et al.  Mechanics of membrane fusion , 2008, Nature Structural &Molecular Biology.

[21]  F. Tiberg,et al.  Periodic minimal surface structures in bicontinuous lipid-water phases and nanoparticles , 2005 .

[22]  D. Tieleman,et al.  The MARTINI force field: coarse grained model for biomolecular simulations. , 2007, The journal of physical chemistry. B.

[23]  Andreas Herrmann,et al.  Bilayer conformation of fusion peptide of influenza virus hemagglutinin: a molecular dynamics simulation study. , 2004, Biophysical journal.

[24]  Benoît Roux,et al.  Molecular dynamics simulations of the influenza hemagglutinin fusion peptide in micelles and bilayers: conformational analysis of peptide and lipids. , 2005, Journal of molecular biology.

[25]  D. Siegel The modified stalk mechanism of lamellar/inverted phase transitions and its implications for membrane fusion. , 1999, Biophysical journal.

[26]  A. J. Markvoort,et al.  A detailed look at vesicle fusion. , 2006, The journal of physical chemistry. B.

[27]  A. Mark,et al.  Molecular view of hexagonal phase formation in phospholipid membranes. , 2004, Biophysical journal.