The application of C-band polarimetric SAR for agriculture: a review

Agricultural targets are very dynamic throughout the growing season, and thus remote sensing is an attractive approach to mapping and monitoring applications. Research performed with synthetic aperture radar (SAR) satellite systems such as European Remote Sensing Satellites ERS-1 and ERS-2, Japanese Earth Resources Satellite 1 (JERS-1), and RADARSAT-1 has demonstrated the potential of using this approach for a wide variety of applications. These satellites all have single-channel radars, however, and the research often concluded that additional channels and multitemporal observations were required. Spaceborne imaging radar C/X-band synthetic aperture radar (SIR-C/X-SAR) demonstrated this approach but was limited to two flight periods for data collection and a relatively small number of sites. RADARSAT-2 will have multipolarization and polarimetric modes and higher resolution than RADARSAT-1. ENVISAT advanced synthetic aperture radar (ASAR) also has a multipolarization capability. These sensors will allow further development of applications in agriculture, particularly crop-type mapping and condition assessment, soil tillage and crop residue mapping, and soil moisture estimation. Research has demonstrated that the additional polarizations will increase the information content in a SAR dataset similar to using multispectral approaches in the optical region. The value of the phase information and the polarimetric parameters that can be derived from these data is less certain. However, this information does help in understanding the scattering mechanisms and target interactions that are occurring, leading to a better approach to data processing and information extraction. Integrating C-band SAR with data acquired at other radar frequencies, or with data acquired by optical sensors, can provide additional crop and soils information. This paper reviews the use of C-band polarimetric and multipolarization data for agricultural applications with an emphasis on the potential of the upcoming RADARSAT-2 system.

[1]  F. Ulaby,et al.  Optimum Radar Parameters for Mapping Soil Moisture , 1976, IEEE Transactions on Geoscience Electronics.

[2]  Setsu Komiyama,et al.  Cross-polarized radar backscatter from moist soil , 1978 .

[3]  R. Protz,et al.  Corn Field Identification Accuracy Using Airborne Radar Imagery , 1980 .

[4]  F. Ulaby,et al.  Aircraft radar response to soil moisture , 1981 .

[5]  Leung Tsang,et al.  Volumetric Effects in Cross-Polarized Airborne Radar Data , 1982, IEEE Transactions on Geoscience and Remote Sensing.

[6]  Jack F. Paris,et al.  Radar Backscattering Properties of Corn And Soybeans at Frequencies of 1.6, 4.75, And 13.3 GHz , 1983, IEEE Transactions on Geoscience and Remote Sensing.

[7]  Robert N. Colwell,et al.  Manual of remote sensing , 1983 .

[8]  Fawwaz T. Ulaby,et al.  Relating the microwave backscattering coefficient to leaf area index , 1984 .

[9]  P. Teillet,et al.  Evaluation of the Crop Classification Performance of X, L and C-Band Sar Imagery , 1984 .

[10]  W. D. Rosenthal,et al.  Active microwave responses: an aid in improved crop classification , 1984 .

[11]  J. Paris,et al.  The effect of leaf size on the microwave backscattering by corn , 1986 .

[12]  Fawwaz Ulaby,et al.  Relating Polaization Phase Difference of SAR Signals to Scene Properties , 1987, IEEE Transactions on Geoscience and Remote Sensing.

[13]  W. Boerner,et al.  Interpretation of the Polarimetric Co-Polarization Phase Tern in Radar Images Obtained with the JPL Airborne L-Band SAR System , 1987, IEEE Transactions on Geoscience and Remote Sensing.

[14]  H. Zebker,et al.  Imaging radar polarization signatures: Theory and observation , 1987 .

[15]  D. Evans,et al.  Radar polarimetry: analysis tools and applications , 1988 .

[16]  R. J. Brown,et al.  Correlations Between X, C And L-band Imagery Within An Agricultural Environment , 1988, International Geoscience and Remote Sensing Symposium, 'Remote Sensing: Moving Toward the 21st Century'..

[17]  Ghassem R. Asrar,et al.  C-band scatterometer measurements of a tallgrass prairie , 1989 .

[18]  J. Zyl,et al.  Unsupervised classification of scattering behavior using radar polarimetry data , 1989 .

[19]  D. Vidal-Madjar,et al.  Theoretical study of the sensitivity of the microwave backscattering coefficient to the soil surface parameters , 1989 .

[20]  A. Beaudoin,et al.  SAR observations and modeling of the C-band backscatter variability due to multiscale geometry and soil moisture , 1990 .

[21]  G. Edwards,et al.  SAR Applications in Agriculture: Multiband Correlation and Segmentation , 1990 .

[22]  Viacheslav I. Kharuk,et al.  Polarimetric indication of plant stress , 1990 .

[23]  G.G. Lemoine,et al.  Separability Of Agricultural Fields And Forest Stands Using Multi-frequency Polarimetric Sar Data Of The Flevoland Site , 1991, [Proceedings] IGARSS'91 Remote Sensing: Global Monitoring for Earth Management.

[24]  R. J. Brown,et al.  Tillage effects on the radar backscattering coefficient of grain stubble fields , 1991 .

[25]  Kamal Sarabandi,et al.  Polarimetric Radar Measurements Of Bare Soil Surfaces At Microwave Frequencies , 1991, [Proceedings] IGARSS'91 Remote Sensing: Global Monitoring for Earth Management.

[26]  P. Ferrazzoli,et al.  Radar Response To Vegetation Parameters: Comparison Between Theory And Maestro-1 Results , 1991, [Proceedings] IGARSS'91 Remote Sensing: Global Monitoring for Earth Management.

[27]  D. Evans,et al.  Separation of vegetation and rock signatures in Thematic Mapper and polarimetric SAR images , 1991 .

[28]  J. J. Sanden,et al.  Meastro-I Flevoland/Speulderbos; analysis results of multiband polarimetric SAR data of forests and agricultural crops. , 1992 .

[29]  R. J. Brown,et al.  Radar Backscatter Frou a Short-Grass Prairie , 1992, [Proceedings] IGARSS '92 International Geoscience and Remote Sensing Symposium.

[30]  C. Schmullius,et al.  Some critical remarks on the use of C-band radar data for soil moisture detection , 1992 .

[31]  R. J. Brown,et al.  Temporal ground-based scatterometer observations of crops in Western Canada , 1992 .

[32]  T. W. Ray,et al.  Polarization Signatures for Abandoned Agricultural Fields in the Manix Basin Area of the Mojave Desert: Can Polarimetric Sar Detect Desertification? , 1991, [Proceedings] IGARSS '92 International Geoscience and Remote Sensing Symposium.

[33]  R. J. Brown,et al.  Correlations between X-, C-, and L-band imagery within an agricultural environment , 1992 .

[34]  P. Pampaloni,et al.  Sensitivity to microwave measurements to vegetation biomass and soil moisture content: a case study , 1992, IEEE Trans. Geosci. Remote. Sens..

[35]  Kamal Sarabandi,et al.  An empirical model and an inversion technique for radar scattering from bare soil surfaces , 1992, IEEE Trans. Geosci. Remote. Sens..

[36]  Martin R. Hinds,et al.  Ku-band polarization characteristics of crops and fallow , 1993, Optics & Photonics.

[37]  B. Bouman,et al.  Multi-temporal, multi-frequency radar measurements of agricultural crops during the Agriscatt-88 campaign in The Netherlands. , 1993 .

[38]  P. Pampaloni,et al.  SAR polarimetric features of agricultural areas , 1993, Proceedings of IGARSS '93 - IEEE International Geoscience and Remote Sensing Symposium.

[39]  H. Mcnairn,et al.  Mapping Corn Residue Cover on Agricultural Fields in Oxford County, Ontario, Using Thematic Mapper , 1993 .

[40]  Frequency dependence of polarization phase difference and polarization index for vegetation covered fields using polarimetric AIRSAR data , 1993, Proceedings of IGARSS '93 - IEEE International Geoscience and Remote Sensing Symposium.

[41]  Giles M. Foody,et al.  Crop classification from C-band polarimetric radar data , 1994 .

[42]  Josef Noll,et al.  Analysis of theoretical surface scattering models for polarimetric microwave remote sensing of bare soils , 1994 .

[43]  G. Schiavon,et al.  Effect of scattering mechanisms on polarimetric features of crops and trees , 1994 .

[44]  J. Villasenor,et al.  On the use of multi-frequency and polarimetric radar backscatter features for classification of agricultural crops , 1994 .

[45]  Pascale C. Dubois,et al.  Measuring soil moisture with imaging radars , 1995, IEEE Trans. Geosci. Remote. Sens..

[46]  R. J. Brown,et al.  Complementarity of radar and visible-infrared sensors in assessing rangeland condition , 1995 .

[47]  B. Brisco,et al.  Multidate SAR/TM synergism for crop classification in western Canada , 1995 .

[48]  D. He,et al.  Evaluation of textural and multipolarization radar features for crop classification , 1995, IEEE Trans. Geosci. Remote. Sens..

[49]  A. Smith,et al.  Multi-temporal, multi-sensor remote sensing for monitoring soil conservation farming , 1995 .

[50]  Masaharu Fujita,et al.  Monitoring of rice crop growth from space using the ERS-1 C-band SAR , 1995, IEEE Trans. Geosci. Remote. Sens..

[51]  M. G. Wooding Satellite Radar in Agriculture. Experience with ERS-1. , 1995 .

[52]  J. Clevers,et al.  Combined use of optical and microwave remote sensing data for crop growth monitoring , 1996 .

[53]  A. Smith,et al.  Identification of agricultural tillage practices from C-band radar backscatter , 1996 .

[54]  Hui Zhao,et al.  Experimental studies on the phase distribution of two copolarized signals scattered from two-dimensional rough surfaces , 1996, IEEE Trans. Geosci. Remote. Sens..

[55]  A. M. Smith,et al.  Radar Backscatter and Crop Residues , 1996 .

[56]  M. S. Moran,et al.  Combining multifrequency microwave and optical data for crop management , 1997 .

[57]  Thuy Le Toan,et al.  The effect of surface roughness on multifrequency polarimetric SAR data , 1997, IEEE Trans. Geosci. Remote. Sens..

[58]  Frédéric Baret,et al.  Crop residue estimation using multiband reflectance , 1997 .

[59]  Eric Pottier,et al.  An entropy based classification scheme for land applications of polarimetric SAR , 1997, IEEE Trans. Geosci. Remote. Sens..

[60]  Simonetta Paloscia,et al.  The potential of multifrequency polarimetric SAR in assessing agricultural and arboreous biomass , 1997, IEEE Trans. Geosci. Remote. Sens..

[61]  R. J. Brown,et al.  Monitoring local environmental conditions with SIR-C/X-SAR , 1997 .

[62]  Thuy Le Toan,et al.  Rice crop mapping and monitoring using ERS-1 data based on experiment and modeling results , 1997, IEEE Trans. Geosci. Remote. Sens..

[63]  Simonetta Paloscia,et al.  The relations between backscattering coefficient and biomass of narrow and wide leaf crops , 1998, IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174).

[64]  Heather McNairn,et al.  Mapping Tillage and Crop Residue Management Practices with RADARSAT , 1998 .

[65]  F. Ulaby,et al.  Multitemporal land-cover classification using SIR-C/X-SAR imagery , 1998 .

[66]  Simonetta Paloscia,et al.  The potential of C- and L-band SAR in estimating vegetation biomass: the ERS-1 and JERS-1 experiments , 1999, IEEE Trans. Geosci. Remote. Sens..

[67]  Paolo Ferrazzoli,et al.  Experimental and model investigation on radar classification capability , 1999, IEEE Trans. Geosci. Remote. Sens..

[68]  Henning Skriver,et al.  Multitemporal C- and L-band polarimetric signatures of crops , 1999, IEEE Trans. Geosci. Remote. Sens..

[69]  F. Ribbes,et al.  Rice field mapping and monitoring with RADARSAT data , 1999 .

[70]  M. Schmitz Measuring soil moisture. , 2000 .

[71]  H. McNairn,et al.  The Potential of RADARSAT-2 for Crop Mapping and Assessing Crop Condition , 2000 .

[72]  Jean-Pierre Wigneron,et al.  Estimation of Watershed Soil Moisture Index from ERS/SAR Data , 2000 .

[73]  佐藤 晃一,et al.  Polarimetric SAR Interferometryによる森林の特徴について , 2000 .

[74]  A. Martínez-Díaz-de-León THE USE OF ERS-1 / 2 SAR TO THE STUDY OF OCEAN SURFACE FEATURES IN THE GULF OF CALIFORNIA , MEXICO , 2000 .

[75]  A. Bannari,et al.  Intérêt du moyen infrarouge pour la cartographie des résidus de cultures , 2000 .

[76]  A. M. Smith,et al.  Estimating Wheat Residue Cover Using Broad and Narrow Band Visible-Infrared Reflectance , 2000 .

[77]  Eric Pottier,et al.  Quantitative comparison of classification capability: fully polarimetric versus dual and single-polarization SAR , 2001, IEEE Trans. Geosci. Remote. Sens..

[78]  Maurice Borgeaud,et al.  The use of ERS-1/2 Tandem interferometric coherence in the estimation of agricultural crop heights , 2001, IEEE Trans. Geosci. Remote. Sens..

[79]  Ram M. Narayanan,et al.  Soil moisture estimation models using SIR-C SAR data: a case study in New Hampshire, USA , 2001 .

[80]  Claude R. Duguay,et al.  Defining the Sensitivity of Multi-Frequency and Multi-Polarized Radar Backscatter to Post-Harvest Crop Residue , 2001 .

[81]  B. Brisco,et al.  The effect of soil and crop residue characteristics on polarimetric radar response , 2002 .

[82]  Yann Kerr,et al.  Comparison of ERS-2 SAR and Landsat TM imagery for monitoring agricultural crop and soil conditions , 2002 .

[83]  Jong-Sen Lee,et al.  Surface roughness and slope measurements using polarimetric SAR data , 2002, IEEE Trans. Geosci. Remote. Sens..

[84]  Heather McNairn,et al.  The sensitivity of C-band polarimetric SAR to crop condition , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[85]  R. J. Brown,et al.  Providing crop information using RADARSAT-1 and satellite optical imagery , 2002 .

[86]  H. McNairn,et al.  Applying polarimetric radar imagery for mapping the productivity of wheat crops , 2004 .

[87]  J. J. van der Sanden,et al.  Anticipated applications potential of RADARSAT-2 data , 2004 .