The effects of combined catalysis of oxalic acid and seawater on the kinetics of xylose and arabinose dehydration to furfural

[1]  L. V. D. Aa,et al.  Kinetic study on homogeneously catalyzed xylose dehydration to furfural in the presence of arabinose and glucose , 2014 .

[2]  W. Jong,et al.  Kinetic Study on the Dilute Acidic Dehydration of Pentoses toward Furfural in Seawater , 2014 .

[3]  W. Jong,et al.  Mechanistic and kinetic aspects of pentose dehydration towards furfural in aqueous media employing homogeneous catalysis , 2014 .

[4]  L. J. van der Aa,et al.  Furfural degradation in a dilute acidic and saline solution in the presence of glucose. , 2013, Carbohydrate research.

[5]  Ningbo Gao,et al.  Seawater-based furfural production via corncob hydrolysis catalyzed by FeCl3 in acetic acid steam , 2013 .

[6]  Pingli Li,et al.  The optimization of formic acid hydrolysis of xylose in furfural production. , 2012, Carbohydrate research.

[7]  Philipp M. Grande,et al.  Chemo-enzymatic conversion of glucose into 5-hydroxymethylfurfural in seawater. , 2012, ChemSusChem.

[8]  Juha Ahola,et al.  Kinetics of Xylose Dehydration into Furfural in Formic Acid , 2012 .

[9]  F. Jérôme,et al.  10 Catalytic conversion of biosourced raw materials: homogeneous catalysis , 2012 .

[10]  G. Marcotullio,et al.  The Chemistry and Technology of Furfural Production in Modern Lignocellulose-Feedstock Biorefineries , 2011 .

[11]  Philipp M. Grande,et al.  Iron-catalyzed furfural production in biobased biphasic systems: from pure sugars to direct use of crude xylose effluents as feedstock. , 2011, ChemSusChem.

[12]  W. de Jong,et al.  Furfural formation from d-xylose: the use of different halides in dilute aqueous acidic solutions allows for exceptionally high yields. , 2011, Carbohydrate research.

[13]  Pablo Domínguez de María,et al.  From biomass to feedstock: one-step fractionation of lignocellulose components by the selective organic acid-catalyzed depolymerization of hemicellulose in a biphasic system , 2011 .

[14]  Julie B. Zimmerman,et al.  ALGAE AS A SOURCE OF RENEWABLE CHEMICALS: OPPORTUNITIES AND CHALLENGES , 2011 .

[15]  J. Clark,et al.  A seawater-based biorefining strategy for fermentative production and chemical transformations of succinic acid , 2011 .

[16]  W. de Jong,et al.  Overview of Biorefineries based on Co-Production of Furfural, Existing Concepts and Novel Developments , 2010 .

[17]  Chau‐Chyun Chen,et al.  THERMODYNAMIC MODELING OF CO2 SOLUBILITY IN AQUEOUS SOLUTIONS OF NACL AND NA2SO4 , 2010 .

[18]  W. Jong,et al.  Chloride ions enhance furfural formation from D-xylose in dilute aqueous acidic solutions , 2010 .

[19]  Philipp M. Grande,et al.  Salt-assisted organic-acid-catalyzed depolymerization of cellulose , 2010 .

[20]  Wm. Curtis Conner,et al.  Kinetics of furfural production by dehydration of xylose in a biphasic reactor with microwave heating , 2010 .

[21]  Joseph J. Bozell,et al.  Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited , 2010 .

[22]  M. Cardoso,et al.  Bioenergy II: Furfural Destruction Kinetics during Sulphuric Acid-Catalyzed Production from Biomass , 2009 .

[23]  H. H. Beeftink,et al.  Differential effects of mineral and organic acids on the kinetics of arabinose degradation under lignocellulose pretreatment conditions , 2009 .

[24]  Qi Jing,et al.  Kinetics of Non-catalyzed Decomposition of Glucose in High-temperature Liquid Water , 2007 .

[25]  C. Wyman,et al.  The enhancement of xylose monomer and xylotriose degradation by inorganic salts in aqueous solutions at 180 °C , 2006 .

[26]  Chau-Chyun Chen,et al.  Generalized electrolyte‐NRTL model for mixed‐solvent electrolyte systems , 2004 .

[27]  A. Haghtalab,et al.  The electrolyte NRTL model and speciation approach as applied to multicomponent aqueous solutions of H2SO4, Fe2(SO4)3, MgSO4 and Al2(SO4)3 at 230–270 °C , 2004 .

[28]  Julie Zimmerman,et al.  Design Through the 12 Principles of Green Engineering , 2003, IEEE Engineering Management Review.

[29]  Michael R Ladisch,et al.  Characterization of acid catalytic domains for cellulose hydrolysis and glucose degradation. , 2002, Biotechnology and bioengineering.

[30]  J. Zandersons,et al.  Furfural and Levoglucosan Production from Deciduous Wood and Agricultural Wastes , 2001 .

[31]  A. Watkinson,et al.  ACID-CATALYZED 2-FURALDEHYDE (FURFURAL) DECOMPOSITION KINETICS , 2000 .

[32]  H. Bünger Ullmann's Encyclopedia of Industrial Chemistry, Vol. B 5: Analytical Methods. VCH Verlagsgesellschaft mbH, Weinheim 1994. XV, 742 S., zahlr. Abb. u. Tab., geb., DM 600,–. , 1995 .

[33]  D. A. Palmer,et al.  Dissociation constant of bisulfate ion in aqueous sodium chloride solutions to 250 degree C , 1990 .

[34]  D. L. White,et al.  Production of oxalic acid via the nitric acid oxidation of hardwood (red oak) sawdust , 1983 .

[35]  O. Popovych,et al.  Correction- Activity Coefficients and Transfer Free Energies of Potassium Chloride in Methanol- Water Solvents at 25 degrees C. , 1982 .

[36]  Andrew P. Dunlop,et al.  Furfural Formation and Behavior , 1948 .

[37]  D. L. Williams,et al.  Kinetics of Furfural Destruction in Acidic Aqueous Media , 1948 .