Proposal of precipitation–dissolution models in a channel affected by acid mine drainage in the Iberian Pyrite Belt during torrential rain regimes

[1]  J. Grande,et al.  Spatial evolution of an AMD stream in the Iberian Pyrite Belt: process characterization and control factors on the hydrochemistry , 2016 .

[2]  J. Grande,et al.  Study of the transit and attenuation of pollutants in a water reservoir receiving acid mine drainage in the Iberian Pyrite Belt (SW Spain) , 2016 .

[3]  J. C. Cerón,et al.  Stratification of Metal and Sulphate Loads in Acid Mine Drainage Receiving Water Dams – Variables Regionalization by Cluster Analysis , 2015, Water environment research : a research publication of the Water Environment Federation.

[4]  J. C. Cerón,et al.  Acid mine drainage in semi-arid regions: the extent of the problem in the waters of reservoirs in the Iberian Pyrite Belt (SW Spain) , 2015 .

[5]  J. C. Cerón,et al.  Fuzzy Intelligence Approach for Modeling the Migration of Contaminants in a Reservoir Affected by AMD Pollution , 2015, Mine Water and the Environment.

[6]  E. P. Ostalé Caracterización ambiental de estructuras mineras en la Faja Pirítica Ibérica como soporte metodológico de gestión territorial , 2014 .

[7]  J. Borrego,et al.  Statistical Contrast Analysis of Hydrochemical Parameters Upstream of the Tidal Influence in Two AMD-Affected Rivers , 2014, Mine Water and the Environment.

[8]  J. Grande,et al.  Characterisation of AMD Pollution in the Reservoirs of the Iberian Pyrite Belt , 2013, Mine Water and the Environment.

[9]  J. A. Grande,et al.  Impact of AMD Processes on the Water Dams of the Iberian Pyrite Belt: Overall Hydrochemical Characterization (Huelva, SW Spain) , 2013, Water, Air, & Soil Pollution.

[10]  Meeinkuirt Weeradej,et al.  2種の草,イネ科Thysanolaena maximaおよびベチベル(Vetiveria zizanioides)によるPb鉱山尾鉱の植物安定化能力 , 2013 .

[11]  M. González Efectos sobre la precitipación de jarosita por acción de potasio en drenajes ácidos de mina , 2012 .

[12]  J. C. Cerón,et al.  Characterization of AMD Pollution in the River Tinto (SW Spain). Geochemical Comparison Between Generating Source and Receiving Environment , 2011 .

[13]  J. Grande,et al.  Relationships between pH, colour and heavy metal concentrations in the Tinto and Odiel rivers (southwest Spain) , 2010 .

[14]  J. Grande,et al.  Quantification of Heavy Metals from A.M.D. Discharged into a Public Water Supply Dam in the Iberian Pyrite Belt (SW Spain) Using Centered Moving Average , 2010 .

[15]  J. A. Grande,et al.  Fuzzy Modeling of the Spatial Evolution of the Chemistry in the Tinto River (SW Spain) , 2010 .

[16]  Carlos Ruiz Cánovas,et al.  Hydrochemical characteristics and seasonal influence on the pollution by acid mine drainage in the Odiel river Basin (SW Spain) , 2009 .

[17]  C. Conde,et al.  Análisis de Elementos Traza por LA-ICPMS en Pirita de los Sulfuros Masivos de Tharsis (FPI) , 2009 .

[18]  B. Spiro,et al.  Formation of the Tharsis Massive Sulfide Deposit, Iberian Pyrite Belt: Geological, Lithogeochemical, and Stable Isotope Evidence for Deposition in a Brine Pool , 2008 .

[19]  E. Santofimia,et al.  Acid mine drainage in the Iberian Pyrite Belt (Odiel river watershed, Huelva, SW Spain): Geochemistry, mineralogy and environmental implications , 2005 .

[20]  J. Borrego,et al.  Acid mine drainage and acid rock drainage processes in the environment of Herrerías Mine (Iberian Pyrite Belt, Huelva-Spain) and impact on the Andevalo Dam , 2005 .

[21]  D. Lyew,et al.  Use of conductivity to monitor the treatment of acid mine drainage by sulphate-reducing bacteria. , 2001, Water research.

[22]  J. Morales,et al.  Rio Tinto estuary (Spain): 5000 years of pollution , 2000 .

[23]  R. Sáez,et al.  The Iberian type of volcano-sedimentary massive sulphide deposits , 1999 .

[24]  D. L. Parkhurst,et al.  User's guide to PHREEQC (Version 2)-a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations , 1999 .

[25]  P. L. Young The longevity of minewater pollution: a basis for decision-making. , 1997 .

[26]  P L Younger,et al.  The longevity of minewater pollution: a basis for decision-making. , 1997, The Science of the total environment.

[27]  Jerry M. Bigham,et al.  SCHWERTMANNITE AND THE CHEMICAL MODELING OF IRON IN ACID SULFATE WATERS , 1996 .

[28]  James W. Ball,et al.  WATEQ4F -- User's manual with revised thermodynamic data base and test cases for calculating speciation of major, trace and redox elements in natural waters , 1991 .

[29]  James W. Ball,et al.  User's manual for WATEQ4F, with revised thermodynamic data base and text cases for calculating speciation of major, trace, and redox elements in natural waters , 1991 .

[30]  L. Sequeiros,et al.  The Basal Shaly formation of the Iberian pyrite belt (South-Portuguese zone): Early carboniferous bituminous deposits , 1989 .

[31]  M. B. Silva Precipitados de hierro en medios sulfato-ácidos que resultan de la alteración de anfibolitas ricas en sulfuros , 1989 .

[32]  N. Breemen Genesis and solution chemistry of acid sulfate soils in Thailand , 1976 .