Wavelet-bounded empirical mode decomposition for measured time series analysis

[1]  Tingting Zhu,et al.  Short-term wind speed forecasting using empirical mode decomposition and feature selection , 2016 .

[2]  Lei Wu,et al.  Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method , 2016 .

[3]  N. Xiang,et al.  ENSEMBLE EMPIRICAL MODE DECOMPOSITION OF THE MAGNETIC FIELD OF THE SUN AS A STAR , 2016 .

[4]  Mehmet Kurt,et al.  Experimental system identification of the dynamics of a vibro-impact beam with a view towards structural health monitoring and damage detection , 2014 .

[5]  A. Vakakis,et al.  Strongly nonlinear beats in the dynamics of an elastic system with a strong local stiffness nonlinearity: Analysis and identification , 2014 .

[6]  Mehmet Kurt,et al.  Nonlinear system identification of frictional effects in a beam with a bolted joint connection , 2013 .

[7]  Ram Bilas Pachori,et al.  Classification of Seizure and Nonseizure EEG Signals Using Empirical Mode Decomposition , 2012, IEEE Transactions on Information Technology in Biomedicine.

[8]  Mehmet Kurt,et al.  Nonlinear system identification of the dynamics of a vibro-impact beam: numerical results , 2012 .

[9]  Ram Bilas Pachori,et al.  Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition , 2011, Comput. Methods Programs Biomed..

[10]  Mehmet Kurt,et al.  Current efforts towards a non-linear system identification methodology of broad applicability , 2011 .

[11]  Michael Feldman,et al.  Hilbert Transform Applications in Mechanical Vibration: Feldman/Hilbert Transform Applications in Mechanical Vibration , 2011 .

[12]  D. P. Mandic,et al.  Multivariate empirical mode decomposition , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[13]  Alexander F. Vakakis,et al.  Physics-Based Foundation for Empirical Mode Decomposition , 2009 .

[14]  Gaëtan Kerschen,et al.  Nonlinear normal modes, Part II: Toward a practical computation using numerical continuation techniques , 2009 .

[15]  G. Kerschen,et al.  Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems , 2008 .

[16]  Robert C. Sharpley,et al.  Decomposition of functions into pairs of intrinsic mode functions , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[17]  Oleg Gendelman,et al.  ApJ, in press , 1999 .

[18]  N. Senroy,et al.  An Improved Hilbert–Huang Method for Analysis of Time-Varying Waveforms in Power Quality , 2007, IEEE Transactions on Power Systems.

[19]  N. Senroy,et al.  Two Techniques to Enhance Empirical Mode Decomposition for Power Quality Applications , 2007, 2007 IEEE Power Engineering Society General Meeting.

[20]  R. Sharpley,et al.  Analysis of the Intrinsic Mode Functions , 2006 .

[21]  Hualou Liang,et al.  Empirical mode decomposition of field potentials from macaque V4 in visual spatial attention , 2005, Biological Cybernetics.

[22]  James F. Kaiser,et al.  The use of a masking signal to improve empirical mode decomposition , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[23]  Gabriel Rilling,et al.  Empirical mode decomposition as a filter bank , 2004, IEEE Signal Processing Letters.

[24]  K. Coughlin,et al.  11-Year solar cycle in the stratosphere extracted by the empirical mode decomposition method , 2004 .

[25]  S. S. Shen,et al.  A confidence limit for the empirical mode decomposition and Hilbert spectral analysis , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[26]  Gabriel Rilling,et al.  On empirical mode decomposition and its algorithms , 2003 .

[27]  Paul S. Addison,et al.  The Illustrated Wavelet Transform Handbook Introductory Theory And Applications In Science , 2002 .

[28]  N. Huang,et al.  A new view of nonlinear water waves: the Hilbert spectrum , 1999 .

[29]  N. Huang,et al.  The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.