Nuclear embeddings in general vector-valued sequence spaces with an application to Sobolev embeddings of function spaces on quasi-bounded domains

We study nuclear embeddings for spaces of Besov and Triebel-Lizorkin type defined on quasi-bounded domains $\Omega\subset {\mathbb R}^n$. The counterpart for such function spaces defined on bounded domains has been considered for a long time and the complete answer was obtained only recently. Compact embeddings for function spaces defined on quasi-bounded domains have been studied in detail already, also concerning their entropy and $s$-numbers. We now prove the first and complete nuclearity result in this context. The concept of nuclearity has been introduce by Grothendieck in 1955 already. Our second main contribution is the generalisation of the famous Tong result (1969) which characterises nuclear diagonal operators acting between sequence spaces of $\ell_r$ type, $1\leq r\leq\infty$. We can now extend this to the setting of general vector-valued sequence spaces of type $\ell_q(\beta_j \ell_p^{M_j})$ with $1\leq p,q\leq\infty$, $M_j\in {\mathbb N}_0$ and weight sequences with $\beta_j>0$. In particular, we prove a criterion for the embedding $id_\beta : \ell_{q_1}(\beta_j \ell_{p_1}^{M_j}) \hookrightarrow \ell_{q_2}(\ell_{p_2}^{M_j})$ to be nuclear.

[1]  H. Triebel Theory Of Function Spaces , 1983 .

[2]  D. Edmunds,et al.  Nuclear Embeddings of Besov Spaces into Zygmund Spaces , 2020, Journal of Fourier Analysis and Applications.

[3]  Per Enflo,et al.  A counterexample to the approximation problem in Banach spaces , 1973 .

[4]  Hans Triebel Nuclear embeddings in function spaces , 2017 .

[5]  Thomas Kühn,et al.  On nuclearity of embeddings between Besov spaces , 2018, J. Approx. Theory.

[6]  H. Triebel,et al.  Interpolationstheorie für Banachideale von beschränkten linearen Operatoren , 1968 .

[7]  David E. Edmunds,et al.  Nuclearity and non-nuclearity of some Sobolev embeddings on domains , 2016, J. Approx. Theory.

[8]  A. Grothendieck,et al.  Produits Tensoriels Topologiques Et Espaces Nucleaires , 1966 .

[9]  Hans-Gerd Leopold,et al.  Embeddings and Entropy Numbers for General Weighted Sequence Spaces: The Non-Limiting Case , 2000 .

[10]  H. Triebel Function Spaces and Wavelets on Domains , 2008 .

[11]  Alfred Tong Diagonal nuclear operators on _{} spaces , 1969 .

[12]  D. Haroske,et al.  Nuclear Embeddings in Weighted Function Spaces , 2020, Integral Equations and Operator Theory.

[13]  Grothendieck's concept of a p-nuclear operator , 1984 .

[14]  Lena Schwartz,et al.  Theory Of Function Spaces Ii , 2016 .

[15]  G. Jameson Summing and nuclear norms in Banach space theory , 1987 .

[16]  H. Triebel Fractals and spectra , 1997 .

[17]  R. Ryan Introduction to Tensor Products of Banach Spaces , 2002 .

[18]  Compactness of embeddings of function spaces on quasi-bounded domains and the distribution of eigenvalues of related elliptic operators. Part II , 2015 .

[19]  David E. Edmunds,et al.  Non-nuclearity of a Sobolev embedding on an interval , 2014, J. Approx. Theory.

[20]  H. Triebel Theory of Function Spaces III , 2008 .

[21]  A. Pietsch Eigenvalues and S-Numbers , 1987 .

[22]  G. Burton Sobolev Spaces , 2013 .

[23]  Shun Zhang,et al.  S-numbers of Compact Embeddings of Function Spaces on Quasi-bounded Domains , 2013, J. Complex..

[24]  Hans-Gerd Leopold,et al.  Compactness of embeddings of function spaces on quasi-bounded domains and the distribution of eigenvalues of related elliptic operators , 2013, Proceedings of the Edinburgh Mathematical Society.

[25]  Rajendra Bhatia,et al.  Pinching, Trimming, Truncating, and Averaging of Matrices , 2000, Am. Math. Mon..

[26]  A. Pietsch History of Banach Spaces and Linear Operators , 2007 .

[27]  Ó. Blasco,et al.  Multipliers on Generalized Mixed Norm Sequence Spaces , 2014 .