Small-angle Coulomb collision model for particle-in-cell simulations

We construct and investigate a set of stochastic differential equations that incorporate the physics of velocity-dependent small-angle Coulomb collisions among the plasma particles in a particle-in-cell simulation. Each particle is scattered stochastically from all the other particles in a simulation cell modeled as one or more Maxwellians. Total energy and momentum are conserved by linear transformation of the velocity increments. In two test simulations the proposed ''particle-moment'' collision algorithm performs well with time steps as large as 10% of the relaxation time - far larger than a particle-pairing collision algorithm, in which pairs of particles are scattered from one another, requires to achieve the same accuracy.

[1]  C. Castaldo,et al.  Screening and attraction of dust particles in plasmas. , 2006, Physical review letters.

[2]  Michael R. Combi,et al.  A Coulomb collision algorithm for weighted particle simulations , 1994 .

[3]  Don S. Lemons,et al.  An Introduction to Stochastic Processes in Physics , 2002 .

[4]  William McCay Nevins,et al.  Electromagnetic gyrokinetic simulations , 2004 .

[5]  Kevin J. Bowers,et al.  Accelerating a paricle -in-cell simulation using a hybrid counting sort , 2001 .

[6]  Bruce I. Cohen,et al.  Particle simulation of Coulomb collisions: Comparing the methods of Takizuka & Abe and Nanbu , 2008, J. Comput. Phys..

[7]  A. B. Langdon,et al.  Stopping and thermalization of interpenetrating plasma streams , 1991 .

[8]  John M. Dawson,et al.  Thermal Relaxation in a One‐Species, One‐Dimensional Plasma , 1964 .

[9]  David J. Larson,et al.  A Coulomb collision model for PIC plasma simulation , 2003 .

[10]  Dean L. Preston,et al.  Charged Particle Motion in a Highly Ionized Plasma , 2005 .

[11]  Peter W. Rambo,et al.  A comparison of kinetic and multifluid simulations of laser-produced colliding plasmas , 1994 .

[12]  Shigeru Yonemura,et al.  Weighted Particles in Coulomb Collision Simulations Based on the Theory of a Cumulative Scattering Angle , 1998 .

[13]  Subrahmanyan Chandrasekhar,et al.  Dynamical friction. I. General considerations: the coefficient of dynamical friction , 1943 .

[14]  T. Takizuka,et al.  A binary collision model for plasma simulation with a particle code , 1977 .

[15]  Richard L. Berger,et al.  Collision and interpenetration of plasmas created by laser-illuminated disks , 1992 .

[16]  Wallace M. Manheimer,et al.  Langevin Representation of Coulomb Collisions in PIC Simulations , 1997 .

[17]  L. Spitzer Physics of fully ionized gases , 1956 .

[18]  John M. Dawson,et al.  Binary collision model in gyrokinetic simulation plasmas , 1993 .

[19]  J. Denavit,et al.  Time-implicit fluid simulation of collisional plasmas , 1992 .

[20]  Giacomo Dimarco,et al.  A Hybrid Method for Accelerated Simulation of Coulomb Collisions in a Plasma , 2007, Multiscale Model. Simul..

[21]  Casanova,et al.  Spherical ion kinetic simulations of DT implosions. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[22]  Mark Sherlock,et al.  A Monte-Carlo method for coulomb collisions in hybrid plasma models , 2008, J. Comput. Phys..

[23]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[24]  Don S. Lemons,et al.  A Grid-Based Coulomb Collision Model for PIC Codes , 1996 .

[25]  Peter W. Rambo,et al.  Interpenetration and ion separation in colliding plasmas , 1994 .

[26]  Winske,et al.  Noise-induced instability in self-consistent Monte Carlo calculations. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.