Organic transistor for bioelectronic applications

Organic field-effect transistors (OFETs) are recently considered to be attractive candidate for bioelectronic applications owing to their prominent biocompatibility, intrinsical flexibility, and potentially low cost associated with their solution processibility. Over the last few years, bioelectronic-application-motivated OFETs have attracted increasing attention towards next generation of biosensors, healthcare elements and artificial neural interfaces. This mini review highlights the basic principles and recent progress in OFET based bioelectronics devices. The key strategies and the forecast perspectives of this research field are also briefly summarized.

[1]  Yan Ma,et al.  Thermally Stable, Biocompatible, and Flexible Organic Field‐Effect Transistors and Their Application in Temperature Sensing Arrays for Artificial Skin , 2015 .

[2]  Joon Hak Oh,et al.  Highly Sensitive and Selective Biosensors Based on Organic Transistors Functionalized with Cucurbit[6]uril Derivatives , 2015 .

[3]  J. Hwang,et al.  Flexible Organic Thin‐Film Transistors with Silk Fibroin as the Gate Dielectric , 2011, Advanced materials.

[4]  Luisa Torsi,et al.  A sensitivity-enhanced field-effect chiral sensor. , 2008, Nature materials.

[5]  Mohammad Yusuf Mulla,et al.  Capacitance-modulated transistor detects odorant binding protein chiral interactions , 2015, Nature Communications.

[6]  M. Stutzmann,et al.  Biofunctional Electrolyte‐Gated Organic Field‐Effect Transistors , 2012, Advanced materials.

[7]  Yong-Sang Kim,et al.  Mechanism of Label-Free DNA Detection Using the Floating Electrode on Pentacene Thin Film Transistor , 2016 .

[8]  Hyunsang Hwang,et al.  Organic core-sheath nanowire artificial synapses with femtojoule energy consumption , 2016, Science Advances.

[9]  George G. Malliaras,et al.  A Disposable paper breathalyzer with an alcohol sensing organic electrochemical transistor , 2016, Scientific Reports.

[10]  Hao Wang,et al.  Solution‐Processable, Low‐Voltage, and High‐Performance Monolayer Field‐Effect Transistors with Aqueous Stability and High Sensitivity , 2015, Advanced materials.

[11]  L. Alcácer,et al.  Self-standing chitosan films as dielectrics in organic thin-film transistors , 2013 .

[12]  Benoît Piro,et al.  Electrolytic Gated Organic Field-Effect Transistors for Application in Biosensors—A Review , 2016 .

[13]  S. Bauer,et al.  Organic Nonvolatile Memory Transistors for Flexible Sensor Arrays , 2009, Science.

[14]  Massimo Barbaro,et al.  Ultralow Voltage, OTFT‐Based Sensor for Label‐Free DNA Detection , 2013, Advanced materials.

[15]  Takao Someya,et al.  A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Deqing Zhang,et al.  Highly Sensitive Thin-Film Field-Effect Transistor Sensor for Ammonia with the DPP-Bithiophene Conjugated Polymer Entailing Thermally Cleavable tert-Butoxy Groups in the Side Chains. , 2016, ACS applied materials & interfaces.

[17]  K. Mabuchi,et al.  Ultraflexible, large-area, physiological temperature sensors for multipoint measurements , 2015, Proceedings of the National Academy of Sciences.

[18]  Yu-Lun Chueh,et al.  The role of water in the device performance of n-type PTCDI-C8 organic field-effect transistors with solution-based gelatin dielectric , 2014 .

[19]  P. Lyu,et al.  Hydrated bovine serum albumin as the gate dielectric material for organic field-effect transistors , 2013 .

[20]  Zhenan Bao,et al.  In Situ, Label‐Free DNA Detection Using Organic Transistor Sensors , 2010, Advanced materials.

[21]  S. Martinoia,et al.  An organic transistor-based system for reference-less electrophysiological monitoring of excitable cells , 2015, Scientific Reports.

[22]  James G. Grote,et al.  Bio-organic field effect transistors based on crosslinked deoxyribonucleic acid (DNA) gate dielectric , 2009 .

[23]  Mallory L. Hammock,et al.  Investigation of protein detection parameters using nanofunctionalized organic field-effect transistors. , 2013, ACS nano.

[24]  C. Gamrat,et al.  An Organic Nanoparticle Transistor Behaving as a Biological Spiking Synapse , 2009, 0907.2540.

[25]  Feng Yan,et al.  Label-free DNA sensor based on organic thin film transistors. , 2009, Biosensors & bioelectronics.

[26]  Zhenan Bao,et al.  Water-stable organic transistors and their application in chemical and biological sensors , 2008, Proceedings of the National Academy of Sciences.

[27]  Zhenan Bao,et al.  Flexible, plastic transistor-based chemical sensors , 2009 .

[28]  Ricardo Garcia,et al.  Multiscale sensing of antibody-antigen interactions by organic transistors and single-molecule force spectroscopy. , 2015, ACS nano.

[29]  T. Hua,et al.  Flexible Organic Electronics in Biology: Materials and Devices , 2015, Advanced materials.

[30]  T. Matsue,et al.  Spearhead Nanometric Field-Effect Transistor Sensors for Single-Cell Analysis. , 2016, ACS nano.

[31]  P. Blom,et al.  University of Groningen Dual-Gate Organic Field-Effect Transistors as Potentiometric Sensors in Aqueous Solution Spijkman, Mark-Jan; Brondijk, Jakob J.; Geuns, Torn C. T.; Smits, Edsger C. P.; Cramer, , 2010 .

[32]  George G. Malliaras,et al.  Influence of Device Geometry on Sensor Characteristics of Planar Organic Electrochemical Transistors , 2010, Advanced materials.

[33]  Gilles Horowitz,et al.  DNA detection with a water-gated organic field-effect transistor , 2012 .

[34]  Mohammad Yusuf Mulla,et al.  Detection Beyond Debye's Length with an Electrolyte‐Gated Organic Field‐Effect Transistor , 2015, Advanced materials.

[35]  Gaetano Scamarcio,et al.  Interfacial electronic effects in functional biolayers integrated into organic field-effect transistors , 2012, Proceedings of the National Academy of Sciences.

[36]  Feng Yan,et al.  Organic Electrochemical Transistors Integrated in Flexible Microfluidic Systems and Used for Label‐Free DNA Sensing , 2011, Advanced materials.

[37]  Tzung-Fang Guo,et al.  Chicken Albumen Dielectrics in Organic Field‐Effect Transistors , 2011, Advanced materials.

[38]  Feng Yan,et al.  Highly Sensitive Glucose Biosensors Based on Organic Electrochemical Transistors Using Platinum Gate Electrodes Modified with Enzyme and Nanomaterials , 2011 .

[39]  L. Torsi,et al.  Tailoring Functional Interlayers in Organic Field‐Effect Transistor Biosensors , 2015, Advanced materials.

[40]  Daoben Zhu,et al.  Interface engineering: an effective approach toward high-performance organic field-effect transistors. , 2009, Accounts of chemical research.

[41]  Yaping Zang,et al.  Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection , 2015, Nature Communications.

[42]  G. Lanzani Materials for bioelectronics: organic electronics meets biology. , 2014, Nature materials.

[43]  Yaping Zang,et al.  Advances of flexible pressure sensors toward artificial intelligence and health care applications , 2015 .

[44]  Kenjiro Fukuda,et al.  Accurate and reproducible detection of proteins in water using an extended-gate type organic transistor biosensor , 2014 .

[45]  Caizhi Liao,et al.  Organic Semiconductors in Organic Thin-Film Transistor-Based Chemical and Biological Sensors , 2013 .

[46]  Benjamin C. K. Tee,et al.  Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring , 2013, Nature Communications.

[47]  H. Katz,et al.  Diverse Organic Field‐Effect Transistor Sensor Responses from Two Functionalized Naphthalenetetracarboxylic Diimides and Copper Phthalocyanine Semiconductors Distinguishable Over a Wide Analyte Range , 2013 .

[48]  Allister F. McGuire,et al.  A skin-inspired organic digital mechanoreceptor , 2015, Science.

[49]  Feng Yan,et al.  The Application of Organic Electrochemical Transistors in Cell‐Based Biosensors , 2010, Advanced materials.

[50]  Daoben Zhu,et al.  Multi‐Functional Integration of Organic Field‐Effect Transistors (OFETs): Advances and Perspectives , 2013, Advanced materials.

[51]  Wolfgang Knoll,et al.  In situ antibody detection and charge discrimination using aqueous stable pentacene transistor biosensors. , 2011, Journal of the American Chemical Society.

[52]  Gui Yu,et al.  Functional Organic Field‐Effect Transistors , 2010, Advanced materials.

[53]  Feng Yan,et al.  Flexible Organic Electrochemical Transistors for Highly Selective Enzyme Biosensors and Used for Saliva Testing , 2015, Advanced materials.

[54]  Takao Someya,et al.  Integration of Organic Electrochemical and Field‐Effect Transistors for Ultraflexible, High Temporal Resolution Electrophysiology Arrays , 2016, Advanced materials.

[55]  Kyriaki Manoli,et al.  Printable Bioelectronics To Investigate Functional Biological Interfaces. , 2015, Angewandte Chemie.

[56]  Kyriaki Manoli,et al.  Organic field-effect transistor sensors: a tutorial review. , 2013, Chemical Society reviews.

[57]  N. Lee,et al.  A Sensor Array Using Multi-functional Field-effect Transistors with Ultrahigh Sensitivity and Precision for Bio-monitoring , 2015, Scientific Reports.

[58]  Yaping Zang,et al.  Flexible and self-powered temperature–pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials , 2015, Nature Communications.

[59]  P. Formánek,et al.  Contact Doping for Vertical Organic Field‐Effect Transistors , 2016 .

[60]  Takao Someya,et al.  Ultraflexible organic amplifier with biocompatible gel electrodes , 2016, Nature Communications.

[61]  Oh Seok Kwon,et al.  Human dopamine receptor nanovesicles for gate-potential modulators in high-performance field-effect transistor biosensors , 2014, Scientific Reports.