Simulation of sedimentation of bidisperse suspensions

Abstract The batch sedimentation behaviour of monodisperse suspensions can be predicted from the flux plot, but this approach is unavailable for polydisperse suspensions. However, computer simulations and shock-capturing numerical solutions are still useful. The Masliyah–Lockett–Bassoon equation, which predicts particle velocities in polydisperse suspensions, is ideally suited to computer simulations. The concentrations of the various species in each thin layer determine the mean velocity of each species there. Using these values, a deterministic simulation involving one million spheres moves each sphere a short distance in a small time-step. When all particles in each layer have been moved, concentrations are recalculated and the process continues until all particles have settled into the packed bed. These simulations mirror the features captured by sophisticated numerical solutions. Shocks are clearly visible and the upper level of the suspension contains only small spheres. Their concentration there is increased beyond its initial value (Smith effect). In reality, identical spheres do not behave identically. Their velocities vary from sphere to sphere and from time to time even when the solids concentration is constant. Thus, we use a stochastic model to incorporate the spatial and continuous temporal variability of particle velocities. This variability produces a hydrodynamic diffusion that replaces shocks by concentration gradients: both the lower and the upper interfaces are diffuse. There is an “induction period” during which the interfaces gradually form. The basic shape of the solids profile is established during this induction period and changes only slightly as the spheres move downward.

[1]  Russel E. Caflisch,et al.  Variance in the sedimentation speed of a suspension , 1985 .

[2]  M. T. Kamel,et al.  The distribution of velocities of a concentric sphere in a dilute dispersion of spheres sedimenting in a spherical container , 1993 .

[3]  Kevin P. Galvin,et al.  A generalized empirical description for particle slip velocities in liquid fluidized beds , 1999 .

[4]  R. Johne Einfluß der Konzentration einer monodispersen Suspension auf die Sinkgeschwindigkeit ihrer Teilchen , 1966 .

[5]  É. Guazzelli,et al.  Velocity fluctuations of a heavy sphere falling through a sedimenting suspension , 1996 .

[6]  D. K. Pickard,et al.  A Markov model for sedimentation , 1977 .

[7]  Comments on A generalized empirical description for particle slip velocities in liquid fluidized beds , 2000 .

[8]  R. Weiland,et al.  Convective solids settling induced by a buoyant phase , 1981 .

[9]  A. Ladd Dynamical simulations of sedimenting spheres , 1993 .

[10]  Paul M. Chaikin,et al.  Long-range correlations in sedimentation , 1997 .

[11]  Eric S. G. Shaqfeh,et al.  Screening in sedimenting suspensions , 1991, Journal of Fluid Mechanics.

[12]  P. Mazur,et al.  Many-sphere hydrodynamic interactions: III. The influence of a plane wall , 1984 .

[13]  D. K. Pickard,et al.  A Markov Model for Sedimentation: Fundamental Issues and Insights , 1987 .

[14]  E. J. Hinch,et al.  Particle velocity fluctuations and hydrodynamic self-diffusion of sedimenting non-Brownian spheres , 1995 .

[15]  Marian Smoluchowski Über die Wechselwirkung von Kugeln, die sich in einer zähen Flüssigkeit bewegen , 1927 .

[16]  A three-parameter markov model for sedimentation II. Simulation of transit times and comparison with experimental results , 1987 .

[17]  P. Mazur,et al.  Many-sphere hydrodynamic interactions: IV. Wall-effects inside a spherical container , 1985 .

[18]  M. T. Kamel,et al.  On the divergence problem in calculating particle velocities in dilute dispersions of identical spheres II. Effect of a plane wall , 1988 .

[19]  Sangtae Kim,et al.  Microhydrodynamics: Principles and Selected Applications , 1991 .

[20]  M. T. Kamel,et al.  Sedimentation is container-size dependent , 1992 .

[21]  Honeycutt,et al.  Stochastic Runge-Kutta algorithms. I. White noise. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[22]  Ladd,et al.  Hydrodynamic screening in sedimenting suspensions of non-Brownian spheres. , 1996, Physical review letters.

[23]  R. King 3 – Interaction between fluids and particles , 2002 .

[24]  Raimund Bürger,et al.  Sedimentation and Thickening , 1999 .

[25]  A. Ladd Sedimentation of homogeneous suspensions of non-Brownian spheres , 1997 .

[26]  Carlos Alberto Brebbia,et al.  Advances in fluid mechanics: proceedings of a conference held at Aachen, March 26-28, 1980 , 1981 .

[27]  Raimund Bürger,et al.  Model Equations and Instability Regions for the Sedimentation of Polydisperse Suspensions of Spheres , 2002 .

[28]  Monika Bargieł,et al.  A three-parameter Markov model for sedimentation III. A stochastic Runge—Kutta method for computing first-passage times , 1994 .

[29]  D. K. Pickard,et al.  Extensions and refinements of a Markov model for sedimentation , 1982 .

[30]  Manuel Laso Stochastic dynamic approach to transport phenomena , 1994 .

[31]  E. M. Tory,et al.  Sedimentation of Small Particles in a Viscous Fluid , 1996 .

[32]  M. J. Lockett,et al.  Sedimentation of Binary Particle Mixtures , 1979 .

[33]  J. Happel,et al.  Low Reynolds number hydrodynamics , 1965 .

[34]  Robert H. Davis Hydrodynamic diffusion of suspended particles: a symposium , 1996, Journal of Fluid Mechanics.

[35]  B. Koglin Statistische Verteilung der Sedimentationsgeschwindigkeit in niedrig konzentrierten Suspensionen , 1971 .

[36]  P. T. Shannon,et al.  Batch and Continuous Thickening. Prediction of Batch Settling Behavior from Initial Rate Data with Results for Rigid Spheres , 1964 .

[37]  Elisabeth Guazzelli,et al.  EFFECT OF THE VESSEL SIZE ON THE HYDRODYNAMIC DIFFUSION OF SEDIMENTING SPHERES , 1995 .

[38]  Stochastic Simulation Of Sedimentation , 1970 .

[39]  Raimund Bürger,et al.  On upper rarefaction waves in batch settling , 2000 .

[40]  Bandaru V. Ramarao,et al.  On instabilities arising during sedimentation of two-component mixtures of solids , 1984, Journal of Fluid Mechanics.

[41]  Jacob H. Masliyah,et al.  ]Hindered settling in a multi-species particle system , 1979 .

[42]  P. Mazur,et al.  On the Smoluchowski paradox in a sedimenting suspension , 1985 .

[43]  G. Batchelor,et al.  Structure formation in bidisperse sedimentation , 1986, Journal of Fluid Mechanics.

[44]  M. T. Kamel,et al.  Mean velocities in polydisperse suspensions , 1997 .

[45]  G. J. Kynch A theory of sedimentation , 1952 .

[46]  D. K. Pickard,et al.  Experimental implications of a Markov model for sedimentation , 1979 .

[47]  D. K. Pickard,et al.  A three‐parameter markov model for sedimentation , 1977 .

[48]  R. Weiland,et al.  The settling of suspensions promoted by rigid buoyant particles , 1984 .

[49]  E. M. Tory,et al.  Stochastic sedimentation and hydrodynamic diffusion , 2000 .

[50]  R. Bürger,et al.  Central difference solutions of the kinematic model of settling of polydisperse suspensions and three-dimensional particle-scale simulations , 2001 .

[51]  P. Mazur,et al.  Many-sphere hydrodynamic interactions and mobilities in a suspension , 1982 .